切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (02) : 121 -126. doi: 10.3877/cma.j.issn.2095-1221.2022.02.010

综述

单管共标签长片段读取技术及其在基因组研究中的应用
寇帅1, 金治平1, 黄以宁1, 廖联明2,()   
  1. 1. 102629 北京,北京嘉宝仁和医疗科技股份有限公司
    2. 350001 福州,福建医科大学附属协和医院中心实验室
  • 收稿日期:2022-02-09 出版日期:2022-04-01
  • 通信作者: 廖联明

Application of co-barcoding single tube long fragment read technology in genome research

Shuai Kou1, Zhiping Jin1, Yining Huang1, Lianming Liao2,()   

  1. 1. Peking Jabrehoo Technology Co., Ltd, Beijing 102629, China
    2. Central Laboratory, Union Hospital, Fujian Medical University, Fuzhou 350001, China
  • Received:2022-02-09 Published:2022-04-01
  • Corresponding author: Lianming Liao
引用本文:

寇帅, 金治平, 黄以宁, 廖联明. 单管共标签长片段读取技术及其在基因组研究中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 121-126.

Shuai Kou, Zhiping Jin, Yining Huang, Lianming Liao. Application of co-barcoding single tube long fragment read technology in genome research[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(02): 121-126.

单管长片段读取技术(stLFR)是指在单管中将来源于同一脱氧核糖核酸(DNA)长分子的短读测序片段标记上相同分子标签的无分隔长片段读取技术。通过该技术制备的文库最终产生短读长(200 ~ 1 000 bp)片段进行测序,经过共标签分析后又能拼接成长片段序列,理论上有类似于三代测序进行长片段分析的功能。目前该技术主要用来对目标样本进行基因组装,相关报道在人类、植物、动物和微生物等都有所涉及,但该技术还未得到充分的利用。本文将对基于共标签的stLFR技术及其相关应用进行综述,为解决基因组长片段功能研究提供参考。

Single tube long fragment read (stLFR) refers to an unseparated long fragment reading technique, which can attach to the read sequencing fragments from the same long DNA molecule with the same molecular label. The library can be prepared by this technology and it may generate short read length (200 ~ 1 000 bp) fragments for sequencing. After co-barcoding analysis, it can splice long fragment sequences. Therefore, it is capable of long fragment analysis similarly to the third-generation sequencing in theory. At present, the technology is mainly used to assemble target samples, and studies have been reported in humans, plants, animals, microorganisms, and so on. However, the technology has not been fully utilized. Therefore, the review of co-barcoding stLFR can provide references for solving the functional study of long genome fragments.

图1 LFR技术建库及组装原理[10]注:HMM genomic DNA为高分子量基因组脱氧核苷酸;Parent 1/Parent 2为亲本一/亲本二;Wells为样本孔;Barcode adapters为标签序列接头
图2 stLFR文库构建流程示意图[13]注:Transposome为转座复合体;Transposase为转座酶;Transposon为转座子;Long genomic DNA为长分子基因组脱氧核糖核酸;Clonal barcoded beads为克隆的标签珠子;Transposon inserted DNA为插入转座子的脱氧核糖核酸;Hybridize DNA with beads为脱氧核糖核酸与珠子杂交;PCR primer annealing site为聚合酶链式反应引物退火位点;Capture splint oligo为低聚核苷酸捕获夹板;CapturedgDNA为被捕获的基因组脱氧核糖核酸;Ligate with barcoded oligo为与低聚核苷酸连接;Remove transposase为移除转座酶;Digest excessive oligos为消化过量的低聚核苷酸;ligate 2ndadaptor为连接第二接头;PCR amplification为聚合酶链式扩增反应;Circularization为环化
表1 基于单管共标签技术不同物种基因组装重要参数的统计
图3 stLFR数据分析复杂结构易位结果分析图[13]注:a图为染色体平衡易位分析图谱,b图为染色体倒位分析图谱
表2 单管共标签长片段读取技术与二、三代测序平台的多方面比较
1
李妍, 徐兴祥. 高通量测序技术的研究进展[J].中国医学工程, 2019(3):6.
2
Schloss Ja. How to get genomes at one ten-thousandth the cost[J]. Nat Biotechnol, 2008, 26(10):1113-1115.
3
程小芳. 基于共标签标记的单管长片段测序技术研发[D]. 华南理工大学, 2019.
4
Pennisi E. Genome sequencing. Searchforpore-Fection[J]. Science, 2012, 336(6081):534-537.
5
Amini S, Pushkarev D, Christiansen L, et al. Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing[J]. Nat Genet, 2014, 46(12):1343-1349.
6
Zhang F, Christiansen L, Thomas J, et al. Haplotype phasing of whole human genomes using bead-based barcode partitioning in a single tube[J]. Nat Biotechnol, 2017, 35(9):852-857.
7
Zheng GX, Lau BT, Schnall-Levin M, et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing[J]. Nat Biotechnol, 2016, 34(3):303-311.
8
Greer SU, Nadauld LD, Lau BT, et al. Linked read sequencing resolves complex genomic rearrangements in gastric cancer metastases[J]. Genome Med, 2017, 9(1):57.
9
Drmanac R. Nucleic acid analysis by random mixtures of non-overlapping fragments[P]. US:EP17167651.3, 20171220.
10
Peters BA, Kermani BG, Sparks AB, et al. Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells[J]. Nature, 2012, 487(7406):190-195.
11
Peters B, Cheng X, Wu M, et al. A simple bead-based method for generating cost-effective co-barcoded sequence reads. Protocol Exchange, 2018. DOI:10.1038/protex.2018.116
12
Drmanac R, Peters Ba, Alexeev A. Multiple tagging of long DNA fragments[P]. US:EP20170317.0, 20201125.
13
Wang O, Chin R, Cheng X, et al. Efficient and unique cobarcoding of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly[J]. Genome Res, 2019, 29(5):798-808.
14
Liu S, Wang H, Leigh D, et al. Third-generation sequencing: any future opportunities for PGT?[J]. J Assist Reprod Genet, 2021, 38(2):357-364.
15
Wang L, Xi Y, Zhang W, et al. 3' Branch ligation: a novel method to ligate non-complementary DNA to recessed or internal 3'OH ends in DNA or RNA[J]. DNA Research, 2018, 26(1):45-53.
16
Tian R, Han K, Geng Y, et al. A chromosome-level genome of the agile gracile mouse opossum (gracilinanus agilis) [J]. Genome Biol Evol, 2021, 13(8):evab162.
17
Zhao N, Guo H, Jia L, et al. Genome assembly and annotation at the chromosomal level of first Pleuronectidae: Verasper variegatus provides a basis for phylogenetic study of Pleuronectiformes[J]. Genomics, 2021, 113(2):717-726.
18
Fan G, Song Y, Yang L, et al. Initial data release and announcement of the 10,000 Fish Genomes Project (Fish10K) [J]. Giga Science, 2020, 9(8):giaa080.
19
Murigneux V, Rai SK, Furtado A, et al. Comparison of long-read methods for sequencing and assembly of a plant genome[J]. Giga Science, 2020, 9(12):giaa146.
20
H Liu, Lan T, Fang D, et al. Chromosome level draft genomes of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), an alien invasive pest in China[J]. bioRxiv 671560, 2019. doi: https://doi.org/10.1101/671560
21
Zhang R, Li C, Yu M, et al. Chromosome-level genome assembly of the humpback puffer,Tetraodon palembangensis[J]. Gigabyte, 2021.https://doi.org/10.46471/gigabyte.17
22
Zhang Z, Liu G, Chen Y, et al. Comparison of different sequencing strategies for assembling chromosome-level genomes of extremophiles with variable GC content[J]. iScience, 2021, 24(3):102219.
23
Xu M, Su X, Zhang M, et al. Draft genome of a porcupinefish, Diodon Holocanthus[J]. bioRxiv 775387, 2019. doi: https://doi.org/10.1101/775387
24
Sun S, Wang Y, Zeng W, et al. The genome of Mekong tiger perch (Datnioides undecimradiatus) provides insights into the phylogenetic position of Lobotiformes and biological conservation[J]. Sci Rep, 2020, 10(1):8164.
25
Huang C, Shao L, Qu S, et al. An integrated Asian human SNV and indel benchmark established using multiple sequencing methods[J]. Sci Rep, 2020, 10(1):9821.
26
Chen S, Yin X, Zhang S, et al. Comprehensive preimplantation genetic testing by massively parallel sequencing[J]. Hum Reprod, 2021, 36(1):236-247.
27
Zhang S, Lei C, Wu J, et al. The establishment and application of preimplantation genetic haplotyping in embryo diagnosis for reciprocal and Robertsonian translocation carriers[J]. BMC Med Genomics, 2017, 10(1):60.
28
Weng J, Chen T, Xie Y, et al. IterCluster: a barcode clustering algorithm for long fragment read analysis[J]. Peer J, 2020, 8:e8431.
29
Xu M, Guo L, Gu S, et al. TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads[J]. Giga Science, 2020, 9(9):giaa094.
30
Guo L, Xu M, Wang W, et al. SLR-superscaffolder: a de novo scaffolding tool for synthetic long reads using a top-to-bottom scheme[J]. BMC Bioinformatics, 2021, 22(1):158.
31
Guo L, Xu M, Wang W, et al. Symbiont-Screener: a reference-free filter to automatically separate host sequences and contaminants for long reads or co-barcoded reads by unsupervised clustering[J]. bioRxiv 354621, 2020.doi: https://doi.org/10.1101/2020.10.26.354621
32
Chen Y, Chen Y, Shi C, et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data[J]. Giga Science, 2018, 7(1):1-6.
33
Edge P, Bafna V, Bansal V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies[J]. Genome Res, 2017, 27(5):801-812.
34
Dutta UR, Rao SN, Pidugu VK, et al. Breakpoint mapping of a novel de novo translocation t(X;20)(q11.1;p13) by positional cloning and long read sequencing[J]. Genomics, 2019, 111(5):1108-1114.
35
MM Yc, Yu Q, Ma M, et al. Variant haplophasing by long-read sequencing: a new approach to preimplantation genetic testing workups[J]. Fertil Steril, 2021, 116(3):774-783.
36
Hu L, Cheng D, Gong F, et al. Reciprocal Translocation Carrier Diagnosis in Preimplantation Human Embryos[J]. EBio Medicine, 2016, 14:139-147.
37
Cheng D, Hu L, Gong F, et al. Clinical outcomes following preimplantation genetic testing and microdissecting junction region in couples with balanced chromosome rearrangement[J]. J Assist Reprod Genet, 2021, 383,735-742.
[1] 朱瑶瑶, 刘双庆, 刘晓礼, 宁莉. 基于生物信息学在单细胞维度解析人胚胎早期发育阶段造血系统的发生及其调控机制[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 266-273.
阅读次数
全文


摘要