切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (02) : 120 -124. doi: 10.3877/cma.j.issn.2095-1221.2021.02.008

所属专题: 文献

综述

胰岛类器官研究进展
吴倩1, 张梅2,()   
  1. 1. 210029 南京医科大学第一附属医院 (江苏省人民医院)内分泌科;210046 南京市泰康仙林鼓楼医院内分泌科
    2. 210029 南京医科大学第一附属医院 (江苏省人民医院)内分泌科
  • 收稿日期:2020-12-25 出版日期:2021-04-01
  • 通信作者: 张梅
  • 基金资助:
    国家自然科学基金(81370939,81670756,81974103); 江苏省重点研发项目(BE2018748); 江苏省"333高层次人才培养工程"(LGY2016007)

Advances in research of islet organoids

Qian Wu1, Mei Zhang2,()   

  1. 1. Department of Endocrinology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Department of Endocrinology, Taikang Xianlin Drum Tower Hospital, Nanjing University School of Medicine, Nanjing 210046, China
    2. Department of Endocrinology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
  • Received:2020-12-25 Published:2021-04-01
  • Corresponding author: Mei Zhang
引用本文:

吴倩, 张梅. 胰岛类器官研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(02): 120-124.

Qian Wu, Mei Zhang. Advances in research of islet organoids[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(02): 120-124.

类器官是将具有多向分化潜能的干细胞或组织细胞在特定环境下培养分化成为能够模拟原生器官结构和功能的三维结构。类器官在各种疾病模型研究及药物筛选中发挥至关重要的作用。近年来,通过体外诱导胰腺组织或多能干细胞分化形成具有胰岛细胞功能的胰岛类器官研究成为热点,为胰岛相关疾病模型、药物研究以及糖尿病的治疗提供了新的手段。本文针对胰岛类器官的体外诱导方法及应用前景作一综述。

Organoids are defined as three-dimensional cellular aggregations differentiated from pluripotent stem cells or adult tissues by cultivating in specific environment, which recapitulate the intricate pattern and function of the original tissue. Organoids play an important role in disease modeling and drug screening. In recent years, differentiating pancreatic tissue or stem cells into pancreatic islet organoids have become a hotspot and provided new ideas for the treatment of diabetes. In this paper, the vitro induction methods and the application prospect of islet organoids are reviewed.

图1 胰岛细胞分化过程
1
DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes[J]. Lancet, 2018, 391(10138):2449-2462.
2
Bretzel RG, Eckhard M, Brendel MD. Pancreatic islet and stem cell transplantation: new strategies in cell therapy of diabetes mellitus[J]. Panminerva Med, 2004, 46(1):25-42.
3
Dadheech N, James Shapiro AM. Human induced pluripotent stem cells in the curative treatment of diabetes and potential impediments ahead[J]. Adv Exp Med Biol, 2019, 1144:25-35.
4
Wu Q, Zheng S, Qin Y, et al. Efficacy and safety of stem cells transplantation in patients with type 1 diabetes mellitus-a systematic review and meta-analysis[J]. Endocr J, 2020, 67(8):827-840.
5
Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194):1247125.
6
Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244):262-265.
7
McCracken KW, Aihara E, Martin B, et al. Wnt/beta-catenin promotes gastric fundus specification in mice and humans[J]. Nature, 2017, 541(7636):182-187.
8
Uchida H, Machida M, Miura T, et al. A xenogeneic-free system generating functional human gut organoids from pluripotent stem cells[J]. JCI insight, 2017, 2(1):e86492.
9
Foster J W, Wahlin K, Adams SM, et al. Cornea organoids from human induced pluripotent stem cells[J]. Sci Rep, 2017, 7:41286.
10
Chen YW, Huang SX, de Carvalho A, et al. A three-dimensional model of human lung development and disease from pluripotent stem cells[J]. Nat Cell Biol, 2017, 19(5):542-549.
11
Crespo M, Vilar E, Tsai SY, et al. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing[J]. Nat Med, 2017, 23(7):878-884.
12
Kim Y, Kim H, Ko UH, et al. Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo[J]. Sci Rep, 2016, 6:35145.
13
Mandarim-de-Lacerda CA. Pancreatic islet (of Langerhans) revisited[J]. Histol Histopathol, 2019, 34(9):985-993.
14
Benitez CM, Goodyer WR, Kim SK. Deconstructing pancreas developmental biology[J]. Cold Spring Harb Perspect Biol, 2012, 4(6):a012401.
15
Takahashi Y, Takebe T, Taniguchi H. Methods for generating vascularized islet-like organoids via self-condensation[J]. Curr Protoc Stem Cell Biol, 2018, 45(1):e49.
16
Loomans CJM, Williams Giuliani N, Balak J, et al. Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential[J]. Stem Cell Reports, 2018, 10(3):712-724.
17
Jiang K, Chaimov D, Patel SN, et al. 3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture[J]. Biomaterials, 2019, 198:37-48.
18
Lebreton F, Lavallard V, Bellofatto K, et al. Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes[J]. Nat Commun, 2019, 10(1):4491.
19
Wang D, Wang J, Bai L, et al. Long-term expansion of pancreatic islet organoids from resident procr(+) progenitors[J]. Cell, 2020, 180(6):1198-1211.e19.
20
Elizondo DM, Brandy NZD, da Silva RLL, et al. Pancreatic islets seeded in a novel bioscaffold forms an organoid to rescue insulin production and reverse hyperglycemia in models of type 1 diabetes[J]. Sci Rep, 2020, 10(1):4362.
21
D'Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells[J]. Nat Biotechnol, 2006, 24(11):1392-1401.
22
Zhang D, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells[J]. Cell Res, 2009, 19(4):429-438.
23
Shim JH, Kim J, Han J, et al. Pancreatic islet-like three-dimensional aggregates derived from human embryonic stem cells ameliorate hyperglycemia in streptozotocin-induced diabetic mice[J]. Cell Transplant, 2015, 24(10):2155-2168.
24
Wang W, Jin S, Ye K. Development of islet organoids from H9 human embryonic stem cells in biomimetic 3D scaffolds[J]. Stem Cells Dev, 2017, 26(6):394-404.
25
Candiello J, Grandhi TSP, Goh SK, et al. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform[J]. Biomaterials, 2018, 177:27-39.
26
Bi H, Ye K, Jin S. Proteomic analysis of decellularized pancreatic matrix identifies collagen V as a critical regulator for islet organogenesis from human pluripotent stem cells[J]. Biomaterials, 2020, 233:119673.
27
Yoshihara E, O’Connor C, Gasser E, et al. Immune-evasive human islet-like organoids ameliorate diabetes[J]. Nature, 2020, 586(7830):606-611.
28
Wang H, Liu H, Zhang X, et al. One-step generation of aqueous-droplet-filled hydrogel fibers as organoid carriers using an all-in-water microfluidic system[J]. ACS Appl Mater Interfaces, 2021, 13(2):3199-3208.
29
Skardal A, Shupe T, Atala A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling[J]. Drug Discov Today, 2016, 21(9):1399-1411.
30
Tao T, Wang Y, Chen W, et al. Engineering human islet organoids from iPSCs using an organ-on-chip platform[J]. Lab Chip, 2019, 19(6):948-958.
31
Lebreton F, Wassmer CH, Belofatto K, et al. [Insulin-secreting organoids: a first step towards the bioartificial pancreas][J]. Med Sci (Paris), 2020, 36(10):879-885.
[1] 尚强强, 王凌峰, 巴特, 曹胜军, 周彪, 李全, 侯智慧, 闫增强, 陈强. 外泌型汗腺参与创面愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 450-453.
[2] 谭汝铿, 曾润玲, 王卓然, 徐萌. 人源类器官的研究进展及在口腔医学的展望[J]. 中华口腔医学研究杂志(电子版), 2019, 13(02): 65-70.
[3] 李武国, 陈伟, 苏乔, 李雯雯, 赵广银, 杨宇童, 刘长琳. 不同处理因素对结直肠癌类器官奥沙利铂敏感性测试结果的影响研究[J]. 中华普通外科学文献(电子版), 2021, 15(06): 418-424.
[4] 赵子祯, 严紫娟, 王家传. 脑类器官培养技术进展及其在缺血性脑卒中损伤修复中的应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 121-128.
[5] 周逸凡, 金颖. ERK信号通路在人多能干细胞的多能性状态调控中的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 27-35.
[6] 高原, 盛伟, 黄国英. 多能干细胞在体外心脏模型构建研究中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 314-318.
[7] 张小佐, 霍海芹, 谭建新, 张芳, 冯浩洋, 许争峰. 多能干细胞体外分化为类神经管模型的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 45-50.
[8] 刘锴. 无异源培养条件下人多能干细胞系H1非病毒转染方法的比较和优化[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 305-310.
[9] 刘艺霖, 吴志鹏, 邱江. 多能干细胞诱导分化为肾脏类器官的研究进展与挑战[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(01): 57-62.
[10] 张金梅, 杨远荣. 类器官的应用研究进展[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(01): 50-53.
[11] 阎凯, 付雍, 章正涛, 卢文峰, 王毅州, 巫国谊, 张海斌. 中晚期肝癌疗效预测模型暨肝癌类器官模型研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 348-351.
[12] 薛强, 赵渊宇, 郭闻渊, 滕飞. 胰岛细胞冻存技术研究进展[J]. 中华肝脏外科手术学电子杂志, 2021, 10(06): 644-647.
[13] 谢炬平, 蒋小峰, 黄镇辉, 张大伟, 梁浩, 薛平. 人胰岛细胞消化与提纯改良方法研究[J]. 中华肝脏外科手术学电子杂志, 2019, 08(06): 557-560.
[14] 王璐, 黄楚月, 李志利, 王一, 孔德松, 刘飞, 樊志敏. 患者来源的结直肠癌类器官模型的构建及其在有毒中药抗癌活性评价中的应用[J]. 中华结直肠疾病电子杂志, 2022, 11(04): 343-348.
[15] 王一, 吴小倩, 黄伟芳, 裴斌, 尚芳, 孔德松, 王小峰, 朱勇, 姚航, 刘飞, 樊志敏. 结直肠癌类器官生物样本库的建立和应用研究进展[J]. 中华结直肠疾病电子杂志, 2021, 10(03): 302-305.
阅读次数
全文


摘要