切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (05) : 314 -318. doi: 10.3877/cma.j.issn.2095-1221.2022.05.009

综述

多能干细胞在体外心脏模型构建研究中的应用
高原1, 盛伟1, 黄国英1,()   
  1. 1. 201102 上海,复旦大学附属儿科医院心血管中心;201102 上海,上海市出生缺陷防治重点实验室;201102 上海,中国医学科学院小儿遗传相关性心血管疾病早期防控创新单元
  • 收稿日期:2022-08-01 出版日期:2022-10-01
  • 通信作者: 黄国英
  • 基金资助:
    国家重点研发计划项目(2021YFC2701000,2016YFC1000500); 中国医学科学院医学与健康科技创新工程项目(2019-I2M-5-002); 国家自然科学基金(81873482); 上海市科学技术委员会"科技创新行动计划"基础研究领域项目(20JC1418300)

Application of pluripotent stem cells in establishing heart model in vitro

Yuan Gao1, Wei Sheng1, Guoying Huang1,()   

  1. 1. Pediatric Heart Center, Children′s Hospital of Fudan University, Shanghai 201102, China; Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China; Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences,Shanghai 201102, China
  • Received:2022-08-01 Published:2022-10-01
  • Corresponding author: Guoying Huang
引用本文:

高原, 盛伟, 黄国英. 多能干细胞在体外心脏模型构建研究中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 314-318.

Yuan Gao, Wei Sheng, Guoying Huang. Application of pluripotent stem cells in establishing heart model in vitro[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(05): 314-318.

传统二维细胞模型和模式生物因其自身局限性并不完全适用于心血管疾病的基础研究。多能干细胞(PSCs),包括胚胎干细胞(ESCs)和诱导PSCs (iPSCs),是一类具有自我增殖能力和多能性的细胞,可分化形成多种细胞。近年来,越来越多的研究选择利用PSCs构建体外心脏模型。目前已可诱导PSCs分化获得多种心脏谱系细胞,也可结合组织工程技术获得组织工程心脏以及在三维培养系统中获得自发形成的类器官模型。利用PSCs获得的体外心脏模型在一定程度上复现了人类心脏的自然发育过程,相比于传统模型更贴合体内心脏的生物学特性和功能,展现出其良好的应用前景。

Traditional two-dimensional cell models and model organisms are not fully applicable to the basic research of cardiovascular diseases due to their own limitations. Pluripotent stem cells (PSCs) , including embryonic stem cells (ESCs) and induced PSCs (iPSCs) , are characterized by the properties of self-renewal and potency. In recent years, more and more studies have constructed in vitro cardiac models with PSCs. At present, PSCs can be induced to differentiate into a variety of cardiac lineage cells, tissue engineered hearts can be obtained by combining tissue engineering techniques, and spontaneous organoid models can be obtained in 3D culture systems. The in vitro heart model obtained by PSCs can partially repaint the natural development process of human heart, and it is more similar to the biological characteristics and functions of the heart in vivo than the traditional model, showing good application prospects.

1
Van Norman GA. Overcoming the declining trends in innovation and investment in cardiovascular therapeutics: beyond EROOM's law[J]. JACC Basic Transl Sci, 2017, 2(5):613-625.
2
Stein JM, Mummery CL, Bellin M. Engineered models of the human heart: Directions and challenges[J]. Stem Cell Reports, 2021, 16(9):2049-2057.
3
Liu G, David BT, Trawczynski M, et al. Advances in pluripotent stem cells: history, mechanisms, technologies, and applications[J]. Stem Cell Rev Rep, 2020, 16(1):3-32.
4
Kwon SG, Kwon YW, Lee TW, et al. Recent advances in stem cell therapeutics and tissue engineering strategies[J]. Biomater Res, 2018, 22:36.
5
Spitalieri P, Talarico RV, Caioli S, et al. Modelling the pathogenesis of myotonic dystrophy type 1 cardiac phenotype through human iPSC-derived cardiomyocytes[J]. J Mol Cell Cardiol, 2018, 118:95-109.
6
Savoji H, Mohammadi MH, Rafatian N, et al. Cardiovascular disease models: A game changing paradigm in drug discovery and screening[J]. Biomaterials, 2019, 198:3-26.
7
Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy[J]. Physiol Rev, 2005, 85(2):635-678.
8
Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population[J]. Nature, 2008, 453(7194):524-528.
9
Cheng L, Xie M, Qiao W, et al. Generation and characterization of cardiac valve endothelial-like cells from human pluripotent stem cells[J]. Commun Biol, 2021, 4(1):1039. DOI:10.1038/s42003-021-02571-7
10
Witty AD, Mihic A, Tam RY, et al. Generation of the epicardial lineage from human pluripotent stem cells[J]. Nat Biotechnol, 2014, 32(10):1026-1035.
11
Guyette JP, Charest JM, Mills RW, et al. Bioengineering human myocardium on native extracellular matrix[J]. Circ Res, 2016, 118(1):56-72.
12
Morton SU, Quiat D, Seidman JG, et al. Genomic frontiers in congenital heart disease[J]. Nat Rev Cardiol, 2022, 19(1):26-42.
13
Hofbauer P, Jahnel SM, Mendjan S. In vitro models of the human heart[J]. Development, 2021, 148(16):dev199672. DOI:10.1242/dev.199672
14
Kelly RG, Buckingham ME, Moorman AF. Heart fields and cardiac morphogenesis[J]. Cold Spring Harb Perspect Med, 2014, 4(10): a015750. DOI:10.1101/cshperspect.a015750
15
Andersen P, Tampakakis E, Jimenez DV, et al. Precardiac organoids form two heart fields via Bmp/Wnt signaling[J]. Nat Commun, 2018, 9(1):3140. DOI:10.1038/s41467-018-05604-8
[16
Cyganek L, Tiburcy M, Sekeres K, et al. Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes[J]. JCI Insight, 2018, 3(12):e99941. DOI:10.1172/jci.insight.99941
17
Protze SI, Liu J, Nussinovitch U, et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker[J]. Nat Biotechnol, 2017, 35(1):56-68.
18
Mikryukov AA, Mazine A, Wei B, et al. BMP10 signaling promotes the development of endocardial cells from human pluripotent stem cell-derived cardiovascular progenitors[J]. Cell Stem Cell, 2021, 28(1):96-111 e7.
19
Guadix JA, Orlova VV, Giacomelli E, et al. Human pluripotent stem cell differentiation into functional epicardial progenitor cells[J]. Stem Cell Reports, 2017, 9(6):1754-1764. DOI:10.1016/j.stemcr.2017.10.023
20
Yoshida S, Miyagawa S, Fukushima S, et al. Maturation of human induced pluripotent stem cell-derived cardiomyocytes by soluble factors from human mesenchymal stem cells[J]. Mol Ther, 2018, 26(11):2681-2695.
21
Zhang J, Tao R, Campbell KF, et al. Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors[J]. Nat Commun, 2019, 10(1):2238. DOI:10.1038/s41467-019-09831-5
22
Giacomelli E, Meraviglia V, Campostrini G, et al. Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease[J]. Cell Stem Cell, 2020, 26(6):862-879.e11.
23
Palpant NJ, Pabon L, Friedman CE, et al. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells[J]. Nat Protoc, 2017, 12(1):15-31.
24
Giacomelli E, Bellin M, Sala L, et al. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells[J]. Development, 2017, 144(6):1008-1017.
25
Archer CR, Sargeant R, Basak J, et al. Characterization and validation of a human 3D cardiac microtissue for the assessment of changes in cardiac pathology[J]. Sci Rep, 2018, 8(1):10160. DOI:10.1038/s41598-018-28393-y.
26
Li RA, Keung W, Cashman TJ, et al. Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells[J]. Biomaterials, 2018, 163:116-127.
27
Goldfracht I, Protze S, Shiti A, et al. Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes[J]. Nat Commun, 2020, 11(1):75. DOI:10.1038/s41467-019-13868-x
28
Mills R J, Parker B L, Quaife-Ryan G A, et al. Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway[J]. Cell Stem Cell, 2019, 24(6):895-907.e6.
29
Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart[J]. Nat Med, 2008, 14(2):213-221.
30
Kupfer ME, Lin WH, Ravikumar V, et al. In Situ expansion, differentiation, and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid[J]. Circ Res, 2020, 127(2):207-224.
31
Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of collagen to rebuild components of the human heart[J]. Science, 2019, 365(6452):482-487.
32
Noor N, Shapira A, Edri R, et al. 3D printing of personalized thick and perfusable cardiac patches and hearts[J]. Adv Sci (Weinh), 2019, 6(11):1900344. DOI:10.1002/advs.201900344
33
Cho S, Lee C, Skylar-Scott MA, et al. Reconstructing the heart using iPSCs: Engineering strategies and applications[J]. J Mol Cell Cardiol, 2021, 157:56-65.
34
Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194):1247125. DOI:10.1126/science.1247125
35
Silva A, Matthys O, Joy D, et al. Developmental co-emergence of cardiac and gut tissues modeled by human iPSC-derived organoids[M]. 2020.
36
Drakhlis L, Biswanath S, Farr CM, et al. Human heart-forming organoids recapitulate early heart and foregut development[J]. Nat Biotechnol, 2021, 39(6):737-746.
37
Rossi G, Broguiere N, Miyamoto M, et al. Capturing cardiogenesis in gastruloids[J]. Cell Stem Cell, 2021, 28(2):230-40.e6.
38
Lewis-Israeli YR, Wasserman AH, Gabalski MA, et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease[J]. Nat Commun, 2021, 12(1):5142. DOI:10.1038/s41467-021-25329-5
39
Hofbauer P, Jahnel SM, Papai N, et al. Cardioids reveal self-organizing principles of human cardiogenesis[J]. Cell, 2021, 184(12):3299-317.e22.
40
Lee J, Sutani A, Kaneko R, et al. In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix[J]. Nat Commun, 2020, 11(1):4283. DOI:10.1038/s41467-020-18031-5.
41
Miyamoto M, Nam L, Kannan S, et al. Heart organoids and tissue models for modeling development and disease[J]. Semin Cell Dev Biol, 2021, 118:119-128.
42
Nugraha B, Buono MF, Emmert MY. Modelling human cardiac diseases with 3D organoid[J]. Eur Heart J, 2018, 39(48):4234-4237.
43
Novak R, Ingram M, Marquez S, et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips[J]. Nat Biomed Eng, 2020, 4(4):407-420.
44
Edington CD, Chen WLK, Geishecker E, et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies[J]. Sci Rep, 2018, 8(1):4530. DOI:10.1038/s41598-018-22749-0.
45
Ramme AP, Koenig L, Hasenberg T, et al. Autologous induced pluripotent stem cell-derived four-organ-chip[J]. Future Sci OA, 2019, 5(8):FSO413. DOI:10.2144/fsoa-2019-0065.
46
Ellis BW, Acun A, Can UI, et al. Human iPSC-derived myocardium-on-chip with capillary-like flow for personalized medicine[J]. Biomicrofluidics, 2017, 11(2):024105. DOI:10.1063/1.4978468.
[1] 尚强强, 王凌峰, 巴特, 曹胜军, 周彪, 李全, 侯智慧, 闫增强, 陈强. 外泌型汗腺参与创面愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 450-453.
[2] 李武国, 陈伟, 苏乔, 李雯雯, 赵广银, 杨宇童, 刘长琳. 不同处理因素对结直肠癌类器官奥沙利铂敏感性测试结果的影响研究[J]. 中华普通外科学文献(电子版), 2021, 15(06): 418-424.
[3] 赵子祯, 严紫娟, 王家传. 脑类器官培养技术进展及其在缺血性脑卒中损伤修复中的应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 121-128.
[4] 符莞孟, 王晓黎, 刘玉, 张潍, 张菊. 干细胞治疗多囊卵巢综合征的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 108-114.
[5] 周逸凡, 金颖. ERK信号通路在人多能干细胞的多能性状态调控中的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 27-35.
[6] 武玉康, 康九红. 多能干细胞在心脏发育和疾病研究中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 378-382.
[7] 柯敏霞, 杨黄恬. 心肌微组织的构建及其在心肌损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 224-229.
[8] 胡敏洁, 王思贤, 王永煜. 人诱导多能干细胞及其在血管相关疾病模型中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 167-175.
[9] 陈妙纯, 吴高椿, 刘韬. 人诱导性多能干细胞向红系分化的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 115-120.
[10] 张小佐, 霍海芹, 谭建新, 张芳, 冯浩洋, 许争峰. 多能干细胞体外分化为类神经管模型的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 45-50.
[11] 杜为, 崔丽娟, 徐迎, 张华, 杜宏伟, 张金美, 刘容志, 王征宇, 杨文玲, 张宇. 脐带血单个核细胞诱导多能干细胞来源自然杀伤细胞的生物学特性[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 329-336.
[12] 刘锴. 无异源培养条件下人多能干细胞系H1非病毒转染方法的比较和优化[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 305-310.
[13] 阎凯, 付雍, 章正涛, 卢文峰, 王毅州, 巫国谊, 张海斌. 中晚期肝癌疗效预测模型暨肝癌类器官模型研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 348-351.
[14] 王璐, 黄楚月, 李志利, 王一, 孔德松, 刘飞, 樊志敏. 患者来源的结直肠癌类器官模型的构建及其在有毒中药抗癌活性评价中的应用[J]. 中华结直肠疾病电子杂志, 2022, 11(04): 343-348.
[15] 汪东生, 吴理达, 顾雨春. 细胞基因疗法在视网膜退行性疾病中的应用和挑战[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 129-133.
阅读次数
全文


摘要