1 |
Van Norman GA. Overcoming the declining trends in innovation and investment in cardiovascular therapeutics: beyond EROOM's law[J]. JACC Basic Transl Sci, 2017, 2(5):613-625.
|
2 |
Stein JM, Mummery CL, Bellin M. Engineered models of the human heart: Directions and challenges[J]. Stem Cell Reports, 2021, 16(9):2049-2057.
|
3 |
Liu G, David BT, Trawczynski M, et al. Advances in pluripotent stem cells: history, mechanisms, technologies, and applications[J]. Stem Cell Rev Rep, 2020, 16(1):3-32.
|
4 |
Kwon SG, Kwon YW, Lee TW, et al. Recent advances in stem cell therapeutics and tissue engineering strategies[J]. Biomater Res, 2018, 22:36.
|
5 |
Spitalieri P, Talarico RV, Caioli S, et al. Modelling the pathogenesis of myotonic dystrophy type 1 cardiac phenotype through human iPSC-derived cardiomyocytes[J]. J Mol Cell Cardiol, 2018, 118:95-109.
|
6 |
Savoji H, Mohammadi MH, Rafatian N, et al. Cardiovascular disease models: A game changing paradigm in drug discovery and screening[J]. Biomaterials, 2019, 198:3-26.
|
7 |
Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy[J]. Physiol Rev, 2005, 85(2):635-678.
|
8 |
Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population[J]. Nature, 2008, 453(7194):524-528.
|
9 |
Cheng L, Xie M, Qiao W, et al. Generation and characterization of cardiac valve endothelial-like cells from human pluripotent stem cells[J]. Commun Biol, 2021, 4(1):1039. DOI: 10.1038/s42003-021-02571-7
|
10 |
Witty AD, Mihic A, Tam RY, et al. Generation of the epicardial lineage from human pluripotent stem cells[J]. Nat Biotechnol, 2014, 32(10):1026-1035.
|
11 |
Guyette JP, Charest JM, Mills RW, et al. Bioengineering human myocardium on native extracellular matrix[J]. Circ Res, 2016, 118(1):56-72.
|
12 |
Morton SU, Quiat D, Seidman JG, et al. Genomic frontiers in congenital heart disease[J]. Nat Rev Cardiol, 2022, 19(1):26-42.
|
13 |
Hofbauer P, Jahnel SM, Mendjan S. In vitro models of the human heart[J]. Development, 2021, 148(16):dev199672. DOI: 10.1242/dev.199672
|
14 |
Kelly RG, Buckingham ME, Moorman AF. Heart fields and cardiac morphogenesis[J]. Cold Spring Harb Perspect Med, 2014, 4(10): a015750. DOI: 10.1101/cshperspect.a015750
|
15 |
Andersen P, Tampakakis E, Jimenez DV, et al. Precardiac organoids form two heart fields via Bmp/Wnt signaling[J]. Nat Commun, 2018, 9(1):3140. DOI: 10.1038/s41467-018-05604-8
|
[16 |
Cyganek L, Tiburcy M, Sekeres K, et al. Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes[J]. JCI Insight, 2018, 3(12):e99941. DOI: 10.1172/jci.insight.99941
|
17 |
Protze SI, Liu J, Nussinovitch U, et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker[J]. Nat Biotechnol, 2017, 35(1):56-68.
|
18 |
Mikryukov AA, Mazine A, Wei B, et al. BMP10 signaling promotes the development of endocardial cells from human pluripotent stem cell-derived cardiovascular progenitors[J]. Cell Stem Cell, 2021, 28(1):96-111 e7.
|
19 |
Guadix JA, Orlova VV, Giacomelli E, et al. Human pluripotent stem cell differentiation into functional epicardial progenitor cells[J]. Stem Cell Reports, 2017, 9(6):1754-1764. DOI: 10.1016/j.stemcr.2017.10.023
|
20 |
Yoshida S, Miyagawa S, Fukushima S, et al. Maturation of human induced pluripotent stem cell-derived cardiomyocytes by soluble factors from human mesenchymal stem cells[J]. Mol Ther, 2018, 26(11):2681-2695.
|
21 |
Zhang J, Tao R, Campbell KF, et al. Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors[J]. Nat Commun, 2019, 10(1):2238. DOI: 10.1038/s41467-019-09831-5
|
22 |
Giacomelli E, Meraviglia V, Campostrini G, et al. Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease[J]. Cell Stem Cell, 2020, 26(6):862-879.e11.
|
23 |
Palpant NJ, Pabon L, Friedman CE, et al. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells[J]. Nat Protoc, 2017, 12(1):15-31.
|
24 |
Giacomelli E, Bellin M, Sala L, et al. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells[J]. Development, 2017, 144(6):1008-1017.
|
25 |
Archer CR, Sargeant R, Basak J, et al. Characterization and validation of a human 3D cardiac microtissue for the assessment of changes in cardiac pathology[J]. Sci Rep, 2018, 8(1):10160. DOI: 10.1038/s41598-018-28393-y.
|
26 |
Li RA, Keung W, Cashman TJ, et al. Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells[J]. Biomaterials, 2018, 163:116-127.
|
27 |
Goldfracht I, Protze S, Shiti A, et al. Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes[J]. Nat Commun, 2020, 11(1):75. DOI: 10.1038/s41467-019-13868-x
|
28 |
Mills R J, Parker B L, Quaife-Ryan G A, et al. Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway[J]. Cell Stem Cell, 2019, 24(6):895-907.e6.
|
29 |
Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart[J]. Nat Med, 2008, 14(2):213-221.
|
30 |
Kupfer ME, Lin WH, Ravikumar V, et al. In Situ expansion, differentiation, and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid[J]. Circ Res, 2020, 127(2):207-224.
|
31 |
Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of collagen to rebuild components of the human heart[J]. Science, 2019, 365(6452):482-487.
|
32 |
Noor N, Shapira A, Edri R, et al. 3D printing of personalized thick and perfusable cardiac patches and hearts[J]. Adv Sci (Weinh), 2019, 6(11):1900344. DOI: 10.1002/advs.201900344
|
33 |
Cho S, Lee C, Skylar-Scott MA, et al. Reconstructing the heart using iPSCs: Engineering strategies and applications[J]. J Mol Cell Cardiol, 2021, 157:56-65.
|
34 |
Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194):1247125. DOI: 10.1126/science.1247125
|
35 |
Silva A, Matthys O, Joy D, et al. Developmental co-emergence of cardiac and gut tissues modeled by human iPSC-derived organoids[M]. 2020.
|
36 |
Drakhlis L, Biswanath S, Farr CM, et al. Human heart-forming organoids recapitulate early heart and foregut development[J]. Nat Biotechnol, 2021, 39(6):737-746.
|
37 |
Rossi G, Broguiere N, Miyamoto M, et al. Capturing cardiogenesis in gastruloids[J]. Cell Stem Cell, 2021, 28(2):230-40.e6.
|
38 |
Lewis-Israeli YR, Wasserman AH, Gabalski MA, et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease[J]. Nat Commun, 2021, 12(1):5142. DOI: 10.1038/s41467-021-25329-5
|
39 |
Hofbauer P, Jahnel SM, Papai N, et al. Cardioids reveal self-organizing principles of human cardiogenesis[J]. Cell, 2021, 184(12):3299-317.e22.
|
40 |
Lee J, Sutani A, Kaneko R, et al. In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix[J]. Nat Commun, 2020, 11(1):4283. DOI: 10.1038/s41467-020-18031-5.
|
41 |
Miyamoto M, Nam L, Kannan S, et al. Heart organoids and tissue models for modeling development and disease[J]. Semin Cell Dev Biol, 2021, 118:119-128.
|
42 |
Nugraha B, Buono MF, Emmert MY. Modelling human cardiac diseases with 3D organoid[J]. Eur Heart J, 2018, 39(48):4234-4237.
|
43 |
Novak R, Ingram M, Marquez S, et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips[J]. Nat Biomed Eng, 2020, 4(4):407-420.
|
44 |
Edington CD, Chen WLK, Geishecker E, et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies[J]. Sci Rep, 2018, 8(1):4530. DOI: 10.1038/s41598-018-22749-0.
|
45 |
Ramme AP, Koenig L, Hasenberg T, et al. Autologous induced pluripotent stem cell-derived four-organ-chip[J]. Future Sci OA, 2019, 5(8):FSO413. DOI: 10.2144/fsoa-2019-0065.
|
46 |
Ellis BW, Acun A, Can UI, et al. Human iPSC-derived myocardium-on-chip with capillary-like flow for personalized medicine[J]. Biomicrofluidics, 2017, 11(2):024105. DOI: 10.1063/1.4978468.
|