切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (06) : 378 -382. doi: 10.3877/cma.j.issn.2095-1221.2022.06.009

综述

多能干细胞在心脏发育和疾病研究中的应用
武玉康1, 康九红1,()   
  1. 1. 200092 上海,同济大学生命科学与技术学院国家干细胞转化资源库
  • 收稿日期:2022-09-11 出版日期:2022-12-01
  • 通信作者: 康九红

Application of pluripotent stem cells in cardiac development and disease research

Yukang Wu1, Jiuhong Kang1,()   

  1. 1. National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
  • Received:2022-09-11 Published:2022-12-01
  • Corresponding author: Jiuhong Kang
引用本文:

武玉康, 康九红. 多能干细胞在心脏发育和疾病研究中的应用[J/OL]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 378-382.

Yukang Wu, Jiuhong Kang. Application of pluripotent stem cells in cardiac development and disease research[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(06): 378-382.

多能干细胞(PSCs)成功建立标志着再生医学时代的开始。PSCs定向心肌样细胞分化一定程度上重现了体内的心脏发育过程,为研究心脏发育的分子机制提供了平台。此外,PSCs源心肌细胞(PSC-CMs)还能够用于心脏疾病建模、药物心脏毒性检测以及细胞移植治疗等,是基础研究和临床治疗最具潜力的功能性细胞类型。本文着重介绍了PSCs定向心肌细胞分化技术、定向心肌细胞分化在解析心脏发育分子机制方面的应用,以及PSCs源心肌细胞在疾病模型构建、药物的心脏安全性检测和疾病再生医学治疗方面的最新研究进展。

The establishment of pluripotent stem cells (PSCs) marked the beginning of regenerative medicine. Cardiomyocyte differentiation of PSCs partially replicates the regulation mode of cardiac development in vivo, so it is believed as an ideal model for studying the molecular mechanisms of cardiac development in vitro. Furthermore, pluripotent stem cell-derived cardiomyocytes (PSC-CMs) , as a promising functional cells for basic research and cell therapy, play an immense role in cardiac disease modelling, drug cardiotoxicity testing/drug discovery and cell therapy. Here, we highlight the current strategies of cardiomyocyte differentiation, the role of PSCs differentiation in resolving the molecular mechanisms of cardiac development, and the progress of PSC-CMs in cardiac disease modelling, drug cardiotoxicity testing and cell transplantation therapy.

表1 PSC-CMs与成熟CMs的区别
图1 PSCs定向心肌细胞分化的方案示意图
1
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292(5819):154-156.
2
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391): 1145-1147.
3
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
4
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
5
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858):1917-1920.
6
Guan J, Wang G, Wang J, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells[J]. Nature, 2022, 605(7909):325-331.
7
Gao Y, Pu J. Differentiation and application of human pluripotent stem cells derived cardiovascular cells for treatment of heart diseases: promises and challenges[J]. Front Cell Dev Biol, 2021, 9:658088. doi: 10.3389/fcell.2021.658088.
8
Tohyama S, Hattori F, Sano M, et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes[J]. Cell Stem Cell, 2013, 12(1):127-137.
9
Burridge PW, Matsa E, Shukla P, et al. Chemically defined generation of human cardiomyocytes[J]. Nature Methods, 2014, 11(8):855-860.
10
Tan Y, Han P, Gu Q, et al. Generation of clinical-grade functional cardiomyocytes from human embryonic stem cells in chemically defined conditions[J]. J Tissue Eng Regen Med, 2018, 12(1):153-163.
11
Karbassi E, Fenix A, Marchiano S, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine[J]. Nat Rev Cardiol, 2020, 17(6):341-359.
12
Kuppusamy KT, Jones DC, Sperber H, et al. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes[J]. Proc Natl Acad Sci U S A, 2015, 112(21):E2785-E2794.
13
Prajapati C, Ojala M, Lappi H, et al. Electrophysiological evaluation of human induced pluripotent stem cell-derived cardiomyocytes obtained by different methods[J]. Stem Cell Res, 2021, 51:102176. doi: 10.1016/j.scr.2021.102176.
14
Liu Y, Bai H, Guo F, et al. PGC-1alpha activator ZLN005 promotes maturation of cardiomyocytes derived from human embryonic stem cells[J]. Aging (Albany NY), 2020, 12(8):7411-7430.
15
Wickramasinghe NM, Sachs D, Shewale B, et al. PPARdelta activation induces metabolic and contractile maturation of human pluripotent stem cell-derived cardiomyocytes[J]. Cell Stem Cell, 2022, 29(4):559-576.e7.
16
Veevers J, Farah EN, Corselli M, et al. Cell-surface marker signature for enrichment of ventricular cardiomyocytes derived from human embryonic stem cells[J]. Stem Cell Reports, 2018, 11(3):828-841.
17
Hamad S, Derichsweiler D, Papadopoulos S, et al. Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations[J]. Theranostics, 2019, 9(24):7222-7238.
18
Sahara M, Santoro F, Sohlmér J, et al. Population and single-cell analysis of human cardiogenesis reveals unique LGR5 ventricular progenitors in embryonic outflow tract[J]. Dev Cell, 2019, 48(4):475-490.e7.
19
Yu Z, Tang PL, Wang J, et al. Mutations in Hnrnpa1 cause congenital heart defects[J]. JCI Insight, 2018, 3(2):e98555. doi: 10.1172/jci.insight.98555.
20
Liang Q, Wang S, Zhou X, et al. Essential role of MESP1-RING1A complex in cardiac differentiation[J]. Dev Cell, 2022, 57(22):2533-2549.e7.
21
Frank S, Ahuja G, Bartsch D, et al. yylncT defines a class of divergently transcribed lncRNAs and safeguards the T-mediated mesodermal commitment of human PSCs[J]. Cell Stem Cell, 2019, 24(2):318-327.e8.
22
Han ZB, Xu ZH, Yu Y, et al. ALKBH5-mediated m(6)A mRNA methylation governs human embryonic stem cell cardiac commitment[J]. Mol Ther Nucleic Acids, 2021, 26:22-33.
23
Guo X, Xu Y, Wang Z, et al. A Linc1405/Eomes complex promotes cardiac mesoderm specification and cardiogenesis[J]. Cell Stem Cell, 2018, 22(6):893-908.e6.
24
Lyu Y, Jia W, Wu Y, et al. Cpmer: A new conserved eEF1A2-binding partner that regulates Eomes translation and cardiomyocyte differentiation[J]. Stem Cell Reports, 2022, 17(5):1154-1169.
25
Lan YH, Banks KM, Pan H, et al. Stage-specific regulation of DNA methylation by TET enzymes during human cardiac differentiation[J]. Cell Rep, 2021, 37(10):110095. doi: 10.1016/j.celrep.2021.110095.
26
Lee J, Shao NY, Paik DT, et al. SETD7 drives cardiac lineage commitment through stage-specific transcriptional activation[J]. Cell Stem Cell, 2018, 22(3):428-444.e5.
27
Moretti A, Bellin M, Welling A, et al. Patient-specific induced pluripotent stem-cell models for Long-QT syndrome[J]. New Engl J Med, 2010, 363(15):1397-1409.
28
Hayama E, Furutani Y, Kawaguchi N, et al. Induced pluripotent stem cell-derived cardiomyocytes with SCN5A R1623Q mutation associated with severe long QT syndrome in fetuses and neonates recapitulates pathophysiological phenotypes[J]. Biology (Basel), 2021, 10(10):1062. doi: 10.3390/biology10101062.
29
Kim C, Wong J, Wen J, et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs[J]. Nature, 2013, 494(7435):105-110.
30
Lan F, Lee AS, Liang P, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells[J]. Cell Stem Cell, 2013, 12(1):101-113.
31
Li S, Pan H, Tan C, et al. Mitochondrial dysfunctions contribute to hypertrophic cardiomyopathy in patient iPSC-derived cardiomyocytes with MT-RNR2 mutation[J]. Stem Cell Reports, 2018, 10(3):808-821.
32
Dai Y, Amenov A, Ignatyeva N, et al. Troponin destabilization impairs sarcomere-cytoskeleton interactions in iPSC-derived cardiomyocytes from dilated cardiomyopathy patients[J]. Sci Rep, 2020, 10(1):209.doi: 10.1038/s41598-019-56597-3.
33
Wang G, McCain ML, Yang L, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies[J]. Nat Med, 2014, 20(6):616-623.
34
McDermott-Roe C, Lv W, Maximova T, et al. Investigation of a dilated cardiomyopathy-associated variant in BAG3 using genome-edited iPSC-derived cardiomyocytes[J]. JCI Insight, 2019, 4(22):e128799. doi: 10.1172/jci.insight.128799.
35
Kathiriya IS, Rao KS, Iacono G, et al. Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease[J]. Dev Cell, 2021, 56(3):292-309.e9.
36
Novak A, Barad L, Lorber A, et al. Functional abnormalities in iPSC-derived cardiomyocytes generated from CPVT1 and CPVT2 patients carrying ryanodine or calsequestrin mutations[J]. J Cell Mol Med, 2015, 19(8):2006-2018.
37
Stillitano F, Karakikes I, Kong CW, et al. Modeling drug-induced long QT syndrome with patient-specific induced pluripotent stem cell-derived cardiomyocytes[J]. Circulation Research, 2013, 113(4):A142-A142.
38
Burridge PW, Li YF, Matsa E, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity[J]. Nat Med, 2016, 22(5):547-556.
39
Sharma A, Burridge PW, McKeithan WL, et al. High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells[J]. Sci Transl Med, 2017, 9(377): eaaf2584. doi: 10.1126/scitranslmed.aaf2584.
40
Gruber A, Edri O, Huber I, et al. Optogenetic modulation of cardiac action potential properties may prevent arrhythmogenesis in short and long QT syndromes[J]. Jci Insight, 2021, 6(11):e147470. doi: 10.1172/jci.insight.147470.
41
Wan JF, Wang G, Qin FY, et al. Z16b, a natural compound from Ganoderma cochlear is a novel RyR2 stabilizer preventing catecholaminergic polymorphic ventricular tachycardia[J]. Acta Pharmacol Sin, 2022, 43(9):2340-2350.
42
Fiedler LR, Chapman K, Xie M, et al. MAP4K4 inhibition promotes survival of human stem cell-derived cardiomyocytes and reduces infarct size in vivo[J]. Cell Stem Cell, 2019, 24(4):579-591.e12.
43
Liu YW, Chen B, Yang X, et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates[J]. Nat Biotechnol, 2018, 36(7):597-605.
44
Kawamura T, Miyagawa S, Fukushima S, et al. Cardiomyocytes derived from MHC-homozygous induced pluripotent stem cells exhibit reduced allogeneic immunogenicity in MHC-matched Non-human primates[J]. Stem Cell Reports, 2016, 6(3):312-320.
45
Shiba Y, Gomibuchi T, Seto T, et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts[J]. Nature, 2016, 538(7625):388-391.
46
Zhao M, Nakada Y, Wei Y, et al. Cyclin D2 Overexpression enhances the efficacy of human induced pluripotent stem cell-derived cardiomyocytes for myocardial repair in a swine model of myocardial infarction[J]. Circulation, 2021, 144(3):210-228.
47
Sun X, Wu J, Qiang B, et al. Transplanted microvessels improve pluripotent stem cell-derived cardiomyocyte engraftment and cardiac function after infarction in rats[J]. Sci Transl Med, 2020, 12(562):eaax2992. doi: 10.1126/scitranslmed.aax2992.
48
Park SJ, Kim RY, Park BW, et al. Dual stem cell therapy synergistically improves cardiac function and vascular regeneration following myocardial infarction[J]. Nat Commun, 2019, 10(1):3123.doi: 10.1038/s41467-019-11091-2.
49
Lou X, Zhao M, Fan C, et al. N-cadherin overexpression enhances the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes in infarcted mouse hearts[J]. Cardiovasc Res, 2020, 116(3):671-685.
50
Ye G, Wen Z, Wen F, et al. Mussel-inspired conductive Ti2C-cryogel promotes functional maturation of cardiomyocytes and enhances repair of myocardial infarction[J]. Theranostics, 2020, 10(5):2047-2066.
51
Yang H, Wei L, Liu C, et al. Engineering human ventricular heart tissue based on macroporous iron oxide scaffolds[J]. Acta Biomater, 2019, 88:540-553.
52
Garbern JC, Escalante GO, Lee RT. Pluripotent stem cell-derived cardiomyocytes for treatment of cardiomyopathic damage: Current concepts and future directions[J]. Trends Cardiovasc Med, 2021, 31(2):85-90.
[1] 周容, 张亚萍, 廖宇, 程晓萍, 管玉龙, 潘广玉, 闫杰, 王贤芝, 苟中山, 潘登科, 李巅远. 超声在基因编辑猪-猴异种并联式心脏移植术中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 617-623.
[2] 谢雨彤, 蒋良福, 池征璘, 李志杰, 高伟阳, 闫合德. 手指皮肤脱套伤修复的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 440-442.
[3] 陈进宏. 腹腔镜活体供肝获取规范与创新[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 324-324.
[4] 唐丹萍, 王萍, 江孟蝶, 杨晓蓉. 自体脂肪移植在乳腺癌术后乳房重建的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 582-585.
[5] 胡宁宁, 赵延荣, 王栋, 王胜亮, 郭源. FMNL3与肝细胞癌肝移植受者预后的相关性研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 283-288.
[6] 中华医学会器官移植学分会. 中国肺移植气道并发症临床诊疗指南(2024版)[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 266-274.
[7] 黄莹, 李璇, 刘梦杨, 彭桂林, 徐鑫, 韦兵, 杨超. 靶向联合治疗双肺移植术后KRAS和BRAF基因双突变晚期肺腺癌一例[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 298-301.
[8] 中华医学会器官移植学分会. 遗体捐献肾脏获取手术技术操作指南[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 257-265.
[9] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[10] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[11] 傅斌生, 冯啸, 杨卿, 曾凯宁, 姚嘉, 唐晖, 刘剑戎, 魏绪霞, 易慧敏, 易述红, 陈规划, 杨扬. 脂肪变性供肝在成人劈离式肝移植中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 789-794.
[12] 魏志鸿, 刘建勇, 吴小雅, 杨芳, 吕立志, 江艺, 蔡秋程. 肝移植术后急性移植物抗宿主病的诊治(附四例报告)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 846-851.
[13] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[14] 中华医学会器官移植学分会, 中华医学会外科学分会外科手术学学组, 中华医学会外科学分会移植学组, 华南劈离式肝移植联盟. 劈离式供肝儿童肝移植中国临床操作指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 593-601.
[15] 刘军, 丘文静, 孙方昊, 李松盈, 易述红, 傅斌生, 杨扬, 罗慧. 在体与离体劈离式肝移植在儿童肝移植中的应用比较[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 688-693.
阅读次数
全文


摘要