切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (06) : 378 -382. doi: 10.3877/cma.j.issn.2095-1221.2022.06.009

综述

多能干细胞在心脏发育和疾病研究中的应用
武玉康1, 康九红1,()   
  1. 1. 200092 上海,同济大学生命科学与技术学院国家干细胞转化资源库
  • 收稿日期:2022-09-11 出版日期:2022-12-01
  • 通信作者: 康九红

Application of pluripotent stem cells in cardiac development and disease research

Yukang Wu1, Jiuhong Kang1,()   

  1. 1. National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
  • Received:2022-09-11 Published:2022-12-01
  • Corresponding author: Jiuhong Kang
引用本文:

武玉康, 康九红. 多能干细胞在心脏发育和疾病研究中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 378-382.

Yukang Wu, Jiuhong Kang. Application of pluripotent stem cells in cardiac development and disease research[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(06): 378-382.

多能干细胞(PSCs)成功建立标志着再生医学时代的开始。PSCs定向心肌样细胞分化一定程度上重现了体内的心脏发育过程,为研究心脏发育的分子机制提供了平台。此外,PSCs源心肌细胞(PSC-CMs)还能够用于心脏疾病建模、药物心脏毒性检测以及细胞移植治疗等,是基础研究和临床治疗最具潜力的功能性细胞类型。本文着重介绍了PSCs定向心肌细胞分化技术、定向心肌细胞分化在解析心脏发育分子机制方面的应用,以及PSCs源心肌细胞在疾病模型构建、药物的心脏安全性检测和疾病再生医学治疗方面的最新研究进展。

The establishment of pluripotent stem cells (PSCs) marked the beginning of regenerative medicine. Cardiomyocyte differentiation of PSCs partially replicates the regulation mode of cardiac development in vivo, so it is believed as an ideal model for studying the molecular mechanisms of cardiac development in vitro. Furthermore, pluripotent stem cell-derived cardiomyocytes (PSC-CMs) , as a promising functional cells for basic research and cell therapy, play an immense role in cardiac disease modelling, drug cardiotoxicity testing/drug discovery and cell therapy. Here, we highlight the current strategies of cardiomyocyte differentiation, the role of PSCs differentiation in resolving the molecular mechanisms of cardiac development, and the progress of PSC-CMs in cardiac disease modelling, drug cardiotoxicity testing and cell transplantation therapy.

表1 PSC-CMs与成熟CMs的区别
图1 PSCs定向心肌细胞分化的方案示意图
1
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292(5819):154-156.
2
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391): 1145-1147.
3
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
4
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
5
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858):1917-1920.
6
Guan J, Wang G, Wang J, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells[J]. Nature, 2022, 605(7909):325-331.
7
Gao Y, Pu J. Differentiation and application of human pluripotent stem cells derived cardiovascular cells for treatment of heart diseases: promises and challenges[J]. Front Cell Dev Biol, 2021, 9:658088. doi: 10.3389/fcell.2021.658088.
8
Tohyama S, Hattori F, Sano M, et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes[J]. Cell Stem Cell, 2013, 12(1):127-137.
9
Burridge PW, Matsa E, Shukla P, et al. Chemically defined generation of human cardiomyocytes[J]. Nature Methods, 2014, 11(8):855-860.
10
Tan Y, Han P, Gu Q, et al. Generation of clinical-grade functional cardiomyocytes from human embryonic stem cells in chemically defined conditions[J]. J Tissue Eng Regen Med, 2018, 12(1):153-163.
11
Karbassi E, Fenix A, Marchiano S, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine[J]. Nat Rev Cardiol, 2020, 17(6):341-359.
12
Kuppusamy KT, Jones DC, Sperber H, et al. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes[J]. Proc Natl Acad Sci U S A, 2015, 112(21):E2785-E2794.
13
Prajapati C, Ojala M, Lappi H, et al. Electrophysiological evaluation of human induced pluripotent stem cell-derived cardiomyocytes obtained by different methods[J]. Stem Cell Res, 2021, 51:102176. doi: 10.1016/j.scr.2021.102176.
14
Liu Y, Bai H, Guo F, et al. PGC-1alpha activator ZLN005 promotes maturation of cardiomyocytes derived from human embryonic stem cells[J]. Aging (Albany NY), 2020, 12(8):7411-7430.
15
Wickramasinghe NM, Sachs D, Shewale B, et al. PPARdelta activation induces metabolic and contractile maturation of human pluripotent stem cell-derived cardiomyocytes[J]. Cell Stem Cell, 2022, 29(4):559-576.e7.
16
Veevers J, Farah EN, Corselli M, et al. Cell-surface marker signature for enrichment of ventricular cardiomyocytes derived from human embryonic stem cells[J]. Stem Cell Reports, 2018, 11(3):828-841.
17
Hamad S, Derichsweiler D, Papadopoulos S, et al. Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations[J]. Theranostics, 2019, 9(24):7222-7238.
18
Sahara M, Santoro F, Sohlmér J, et al. Population and single-cell analysis of human cardiogenesis reveals unique LGR5 ventricular progenitors in embryonic outflow tract[J]. Dev Cell, 2019, 48(4):475-490.e7.
19
Yu Z, Tang PL, Wang J, et al. Mutations in Hnrnpa1 cause congenital heart defects[J]. JCI Insight, 2018, 3(2):e98555. doi: 10.1172/jci.insight.98555.
20
Liang Q, Wang S, Zhou X, et al. Essential role of MESP1-RING1A complex in cardiac differentiation[J]. Dev Cell, 2022, 57(22):2533-2549.e7.
21
Frank S, Ahuja G, Bartsch D, et al. yylncT defines a class of divergently transcribed lncRNAs and safeguards the T-mediated mesodermal commitment of human PSCs[J]. Cell Stem Cell, 2019, 24(2):318-327.e8.
22
Han ZB, Xu ZH, Yu Y, et al. ALKBH5-mediated m(6)A mRNA methylation governs human embryonic stem cell cardiac commitment[J]. Mol Ther Nucleic Acids, 2021, 26:22-33.
23
Guo X, Xu Y, Wang Z, et al. A Linc1405/Eomes complex promotes cardiac mesoderm specification and cardiogenesis[J]. Cell Stem Cell, 2018, 22(6):893-908.e6.
24
Lyu Y, Jia W, Wu Y, et al. Cpmer: A new conserved eEF1A2-binding partner that regulates Eomes translation and cardiomyocyte differentiation[J]. Stem Cell Reports, 2022, 17(5):1154-1169.
25
Lan YH, Banks KM, Pan H, et al. Stage-specific regulation of DNA methylation by TET enzymes during human cardiac differentiation[J]. Cell Rep, 2021, 37(10):110095. doi: 10.1016/j.celrep.2021.110095.
26
Lee J, Shao NY, Paik DT, et al. SETD7 drives cardiac lineage commitment through stage-specific transcriptional activation[J]. Cell Stem Cell, 2018, 22(3):428-444.e5.
27
Moretti A, Bellin M, Welling A, et al. Patient-specific induced pluripotent stem-cell models for Long-QT syndrome[J]. New Engl J Med, 2010, 363(15):1397-1409.
28
Hayama E, Furutani Y, Kawaguchi N, et al. Induced pluripotent stem cell-derived cardiomyocytes with SCN5A R1623Q mutation associated with severe long QT syndrome in fetuses and neonates recapitulates pathophysiological phenotypes[J]. Biology (Basel), 2021, 10(10):1062. doi: 10.3390/biology10101062.
29
Kim C, Wong J, Wen J, et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs[J]. Nature, 2013, 494(7435):105-110.
30
Lan F, Lee AS, Liang P, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells[J]. Cell Stem Cell, 2013, 12(1):101-113.
31
Li S, Pan H, Tan C, et al. Mitochondrial dysfunctions contribute to hypertrophic cardiomyopathy in patient iPSC-derived cardiomyocytes with MT-RNR2 mutation[J]. Stem Cell Reports, 2018, 10(3):808-821.
32
Dai Y, Amenov A, Ignatyeva N, et al. Troponin destabilization impairs sarcomere-cytoskeleton interactions in iPSC-derived cardiomyocytes from dilated cardiomyopathy patients[J]. Sci Rep, 2020, 10(1):209.doi: 10.1038/s41598-019-56597-3.
33
Wang G, McCain ML, Yang L, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies[J]. Nat Med, 2014, 20(6):616-623.
34
McDermott-Roe C, Lv W, Maximova T, et al. Investigation of a dilated cardiomyopathy-associated variant in BAG3 using genome-edited iPSC-derived cardiomyocytes[J]. JCI Insight, 2019, 4(22):e128799. doi: 10.1172/jci.insight.128799.
35
Kathiriya IS, Rao KS, Iacono G, et al. Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease[J]. Dev Cell, 2021, 56(3):292-309.e9.
36
Novak A, Barad L, Lorber A, et al. Functional abnormalities in iPSC-derived cardiomyocytes generated from CPVT1 and CPVT2 patients carrying ryanodine or calsequestrin mutations[J]. J Cell Mol Med, 2015, 19(8):2006-2018.
37
Stillitano F, Karakikes I, Kong CW, et al. Modeling drug-induced long QT syndrome with patient-specific induced pluripotent stem cell-derived cardiomyocytes[J]. Circulation Research, 2013, 113(4):A142-A142.
38
Burridge PW, Li YF, Matsa E, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity[J]. Nat Med, 2016, 22(5):547-556.
39
Sharma A, Burridge PW, McKeithan WL, et al. High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells[J]. Sci Transl Med, 2017, 9(377): eaaf2584. doi: 10.1126/scitranslmed.aaf2584.
40
Gruber A, Edri O, Huber I, et al. Optogenetic modulation of cardiac action potential properties may prevent arrhythmogenesis in short and long QT syndromes[J]. Jci Insight, 2021, 6(11):e147470. doi: 10.1172/jci.insight.147470.
41
Wan JF, Wang G, Qin FY, et al. Z16b, a natural compound from Ganoderma cochlear is a novel RyR2 stabilizer preventing catecholaminergic polymorphic ventricular tachycardia[J]. Acta Pharmacol Sin, 2022, 43(9):2340-2350.
42
Fiedler LR, Chapman K, Xie M, et al. MAP4K4 inhibition promotes survival of human stem cell-derived cardiomyocytes and reduces infarct size in vivo[J]. Cell Stem Cell, 2019, 24(4):579-591.e12.
43
Liu YW, Chen B, Yang X, et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates[J]. Nat Biotechnol, 2018, 36(7):597-605.
44
Kawamura T, Miyagawa S, Fukushima S, et al. Cardiomyocytes derived from MHC-homozygous induced pluripotent stem cells exhibit reduced allogeneic immunogenicity in MHC-matched Non-human primates[J]. Stem Cell Reports, 2016, 6(3):312-320.
45
Shiba Y, Gomibuchi T, Seto T, et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts[J]. Nature, 2016, 538(7625):388-391.
46
Zhao M, Nakada Y, Wei Y, et al. Cyclin D2 Overexpression enhances the efficacy of human induced pluripotent stem cell-derived cardiomyocytes for myocardial repair in a swine model of myocardial infarction[J]. Circulation, 2021, 144(3):210-228.
47
Sun X, Wu J, Qiang B, et al. Transplanted microvessels improve pluripotent stem cell-derived cardiomyocyte engraftment and cardiac function after infarction in rats[J]. Sci Transl Med, 2020, 12(562):eaax2992. doi: 10.1126/scitranslmed.aax2992.
48
Park SJ, Kim RY, Park BW, et al. Dual stem cell therapy synergistically improves cardiac function and vascular regeneration following myocardial infarction[J]. Nat Commun, 2019, 10(1):3123.doi: 10.1038/s41467-019-11091-2.
49
Lou X, Zhao M, Fan C, et al. N-cadherin overexpression enhances the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes in infarcted mouse hearts[J]. Cardiovasc Res, 2020, 116(3):671-685.
50
Ye G, Wen Z, Wen F, et al. Mussel-inspired conductive Ti2C-cryogel promotes functional maturation of cardiomyocytes and enhances repair of myocardial infarction[J]. Theranostics, 2020, 10(5):2047-2066.
51
Yang H, Wei L, Liu C, et al. Engineering human ventricular heart tissue based on macroporous iron oxide scaffolds[J]. Acta Biomater, 2019, 88:540-553.
52
Garbern JC, Escalante GO, Lee RT. Pluripotent stem cell-derived cardiomyocytes for treatment of cardiomyopathic damage: Current concepts and future directions[J]. Trends Cardiovasc Med, 2021, 31(2):85-90.
[1] 谢迎东, 孙帼, 徐超丽, 杨斌, 孙晖, 戴云. 超声造影定量评价不同生存期移植肾血流灌注的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 749-754.
[2] 罗旺林, 杨传军, 许国星, 俞建国, 孙伟东, 颜文娟, 冯志. 开放性楔形胫骨高位截骨术不同植入材料的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 818-826.
[3] 顾娟, 孙擎擎, 胡方方, 曹义娟, 祁玉娟. 子宫内膜容受性检测改善胚胎反复种植失败患者妊娠结局的临床应用[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 582-587.
[4] 刘林峰, 王增涛, 王云鹏, 钟硕, 郝丽文, 仇申强, 陈超. 足底内侧皮瓣联合甲骨皮瓣在手指V度缺损再造中的临床应用[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 480-484.
[5] 陈永沛, 仲海燕, 陈勇, 王慜, 王倩, 邹鸣立, 袁斯明. 数字减影血管造影在腓动脉穿支皮瓣移植中的应用[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 507-510.
[6] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[7] 刘竹影, 周年苟, 李泳祺, 周丽斌. 空心环钻联合手术导板用于自体牙移植牙槽窝备洞[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 418-423.
[8] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[9] 廖梅, 张红君, 金洁玚, 吕艳, 任杰. 床旁超声造影对肝移植术后早期肝动脉血栓的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 630-634.
[10] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[11] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[12] 王孟龙. 肿瘤生物学特征在肝癌肝移植治疗中的意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 490-494.
[13] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[14] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[15] 王丁然, 迟洪滨. 自身免疫甲状腺炎对子宫内膜异位症患者胚胎移植结局的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 682-688.
阅读次数
全文


摘要