1 |
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292(5819):154-156.
|
2 |
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391): 1145-1147.
|
3 |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
|
4 |
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
|
5 |
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858):1917-1920.
|
6 |
Guan J, Wang G, Wang J, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells[J]. Nature, 2022, 605(7909):325-331.
|
7 |
Gao Y, Pu J. Differentiation and application of human pluripotent stem cells derived cardiovascular cells for treatment of heart diseases: promises and challenges[J]. Front Cell Dev Biol, 2021, 9:658088. doi: 10.3389/fcell.2021.658088.
|
8 |
Tohyama S, Hattori F, Sano M, et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes[J]. Cell Stem Cell, 2013, 12(1):127-137.
|
9 |
Burridge PW, Matsa E, Shukla P, et al. Chemically defined generation of human cardiomyocytes[J]. Nature Methods, 2014, 11(8):855-860.
|
10 |
Tan Y, Han P, Gu Q, et al. Generation of clinical-grade functional cardiomyocytes from human embryonic stem cells in chemically defined conditions[J]. J Tissue Eng Regen Med, 2018, 12(1):153-163.
|
11 |
Karbassi E, Fenix A, Marchiano S, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine[J]. Nat Rev Cardiol, 2020, 17(6):341-359.
|
12 |
Kuppusamy KT, Jones DC, Sperber H, et al. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes[J]. Proc Natl Acad Sci U S A, 2015, 112(21):E2785-E2794.
|
13 |
Prajapati C, Ojala M, Lappi H, et al. Electrophysiological evaluation of human induced pluripotent stem cell-derived cardiomyocytes obtained by different methods[J]. Stem Cell Res, 2021, 51:102176. doi: 10.1016/j.scr.2021.102176.
|
14 |
Liu Y, Bai H, Guo F, et al. PGC-1alpha activator ZLN005 promotes maturation of cardiomyocytes derived from human embryonic stem cells[J]. Aging (Albany NY), 2020, 12(8):7411-7430.
|
15 |
Wickramasinghe NM, Sachs D, Shewale B, et al. PPARdelta activation induces metabolic and contractile maturation of human pluripotent stem cell-derived cardiomyocytes[J]. Cell Stem Cell, 2022, 29(4):559-576.e7.
|
16 |
Veevers J, Farah EN, Corselli M, et al. Cell-surface marker signature for enrichment of ventricular cardiomyocytes derived from human embryonic stem cells[J]. Stem Cell Reports, 2018, 11(3):828-841.
|
17 |
Hamad S, Derichsweiler D, Papadopoulos S, et al. Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations[J]. Theranostics, 2019, 9(24):7222-7238.
|
18 |
Sahara M, Santoro F, Sohlmér J, et al. Population and single-cell analysis of human cardiogenesis reveals unique LGR5 ventricular progenitors in embryonic outflow tract[J]. Dev Cell, 2019, 48(4):475-490.e7.
|
19 |
Yu Z, Tang PL, Wang J, et al. Mutations in Hnrnpa1 cause congenital heart defects[J]. JCI Insight, 2018, 3(2):e98555. doi: 10.1172/jci.insight.98555.
|
20 |
Liang Q, Wang S, Zhou X, et al. Essential role of MESP1-RING1A complex in cardiac differentiation[J]. Dev Cell, 2022, 57(22):2533-2549.e7.
|
21 |
Frank S, Ahuja G, Bartsch D, et al. yylncT defines a class of divergently transcribed lncRNAs and safeguards the T-mediated mesodermal commitment of human PSCs[J]. Cell Stem Cell, 2019, 24(2):318-327.e8.
|
22 |
Han ZB, Xu ZH, Yu Y, et al. ALKBH5-mediated m(6)A mRNA methylation governs human embryonic stem cell cardiac commitment[J]. Mol Ther Nucleic Acids, 2021, 26:22-33.
|
23 |
Guo X, Xu Y, Wang Z, et al. A Linc1405/Eomes complex promotes cardiac mesoderm specification and cardiogenesis[J]. Cell Stem Cell, 2018, 22(6):893-908.e6.
|
24 |
Lyu Y, Jia W, Wu Y, et al. Cpmer: A new conserved eEF1A2-binding partner that regulates Eomes translation and cardiomyocyte differentiation[J]. Stem Cell Reports, 2022, 17(5):1154-1169.
|
25 |
Lan YH, Banks KM, Pan H, et al. Stage-specific regulation of DNA methylation by TET enzymes during human cardiac differentiation[J]. Cell Rep, 2021, 37(10):110095. doi: 10.1016/j.celrep.2021.110095.
|
26 |
Lee J, Shao NY, Paik DT, et al. SETD7 drives cardiac lineage commitment through stage-specific transcriptional activation[J]. Cell Stem Cell, 2018, 22(3):428-444.e5.
|
27 |
Moretti A, Bellin M, Welling A, et al. Patient-specific induced pluripotent stem-cell models for Long-QT syndrome[J]. New Engl J Med, 2010, 363(15):1397-1409.
|
28 |
Hayama E, Furutani Y, Kawaguchi N, et al. Induced pluripotent stem cell-derived cardiomyocytes with SCN5A R1623Q mutation associated with severe long QT syndrome in fetuses and neonates recapitulates pathophysiological phenotypes[J]. Biology (Basel), 2021, 10(10):1062. doi: 10.3390/biology10101062.
|
29 |
Kim C, Wong J, Wen J, et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs[J]. Nature, 2013, 494(7435):105-110.
|
30 |
Lan F, Lee AS, Liang P, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells[J]. Cell Stem Cell, 2013, 12(1):101-113.
|
31 |
Li S, Pan H, Tan C, et al. Mitochondrial dysfunctions contribute to hypertrophic cardiomyopathy in patient iPSC-derived cardiomyocytes with MT-RNR2 mutation[J]. Stem Cell Reports, 2018, 10(3):808-821.
|
32 |
Dai Y, Amenov A, Ignatyeva N, et al. Troponin destabilization impairs sarcomere-cytoskeleton interactions in iPSC-derived cardiomyocytes from dilated cardiomyopathy patients[J]. Sci Rep, 2020, 10(1):209.doi: 10.1038/s41598-019-56597-3.
|
33 |
Wang G, McCain ML, Yang L, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies[J]. Nat Med, 2014, 20(6):616-623.
|
34 |
McDermott-Roe C, Lv W, Maximova T, et al. Investigation of a dilated cardiomyopathy-associated variant in BAG3 using genome-edited iPSC-derived cardiomyocytes[J]. JCI Insight, 2019, 4(22):e128799. doi: 10.1172/jci.insight.128799.
|
35 |
Kathiriya IS, Rao KS, Iacono G, et al. Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease[J]. Dev Cell, 2021, 56(3):292-309.e9.
|
36 |
Novak A, Barad L, Lorber A, et al. Functional abnormalities in iPSC-derived cardiomyocytes generated from CPVT1 and CPVT2 patients carrying ryanodine or calsequestrin mutations[J]. J Cell Mol Med, 2015, 19(8):2006-2018.
|
37 |
Stillitano F, Karakikes I, Kong CW, et al. Modeling drug-induced long QT syndrome with patient-specific induced pluripotent stem cell-derived cardiomyocytes[J]. Circulation Research, 2013, 113(4):A142-A142.
|
38 |
Burridge PW, Li YF, Matsa E, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity[J]. Nat Med, 2016, 22(5):547-556.
|
39 |
Sharma A, Burridge PW, McKeithan WL, et al. High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells[J]. Sci Transl Med, 2017, 9(377): eaaf2584. doi: 10.1126/scitranslmed.aaf2584.
|
40 |
Gruber A, Edri O, Huber I, et al. Optogenetic modulation of cardiac action potential properties may prevent arrhythmogenesis in short and long QT syndromes[J]. Jci Insight, 2021, 6(11):e147470. doi: 10.1172/jci.insight.147470.
|
41 |
Wan JF, Wang G, Qin FY, et al. Z16b, a natural compound from Ganoderma cochlear is a novel RyR2 stabilizer preventing catecholaminergic polymorphic ventricular tachycardia[J]. Acta Pharmacol Sin, 2022, 43(9):2340-2350.
|
42 |
Fiedler LR, Chapman K, Xie M, et al. MAP4K4 inhibition promotes survival of human stem cell-derived cardiomyocytes and reduces infarct size in vivo[J]. Cell Stem Cell, 2019, 24(4):579-591.e12.
|
43 |
Liu YW, Chen B, Yang X, et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates[J]. Nat Biotechnol, 2018, 36(7):597-605.
|
44 |
Kawamura T, Miyagawa S, Fukushima S, et al. Cardiomyocytes derived from MHC-homozygous induced pluripotent stem cells exhibit reduced allogeneic immunogenicity in MHC-matched Non-human primates[J]. Stem Cell Reports, 2016, 6(3):312-320.
|
45 |
Shiba Y, Gomibuchi T, Seto T, et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts[J]. Nature, 2016, 538(7625):388-391.
|
46 |
Zhao M, Nakada Y, Wei Y, et al. Cyclin D2 Overexpression enhances the efficacy of human induced pluripotent stem cell-derived cardiomyocytes for myocardial repair in a swine model of myocardial infarction[J]. Circulation, 2021, 144(3):210-228.
|
47 |
Sun X, Wu J, Qiang B, et al. Transplanted microvessels improve pluripotent stem cell-derived cardiomyocyte engraftment and cardiac function after infarction in rats[J]. Sci Transl Med, 2020, 12(562):eaax2992. doi: 10.1126/scitranslmed.aax2992.
|
48 |
Park SJ, Kim RY, Park BW, et al. Dual stem cell therapy synergistically improves cardiac function and vascular regeneration following myocardial infarction[J]. Nat Commun, 2019, 10(1):3123.doi: 10.1038/s41467-019-11091-2.
|
49 |
Lou X, Zhao M, Fan C, et al. N-cadherin overexpression enhances the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes in infarcted mouse hearts[J]. Cardiovasc Res, 2020, 116(3):671-685.
|
50 |
Ye G, Wen Z, Wen F, et al. Mussel-inspired conductive Ti2C-cryogel promotes functional maturation of cardiomyocytes and enhances repair of myocardial infarction[J]. Theranostics, 2020, 10(5):2047-2066.
|
51 |
Yang H, Wei L, Liu C, et al. Engineering human ventricular heart tissue based on macroporous iron oxide scaffolds[J]. Acta Biomater, 2019, 88:540-553.
|
52 |
Garbern JC, Escalante GO, Lee RT. Pluripotent stem cell-derived cardiomyocytes for treatment of cardiomyopathic damage: Current concepts and future directions[J]. Trends Cardiovasc Med, 2021, 31(2):85-90.
|