切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (06) : 372 -377. doi: 10.3877/cma.j.issn.2095-1221.2022.06.008

综述

间充质干细胞与巨噬细胞相互作用机制的研究进展
陈彤1, 张帆2, 房橙橙1, 李全海1, 闫宝勇2, 张君2,()   
  1. 1. 050030 石家庄,河北医科大学第一医院细胞治疗实验室;050011 石家庄,河北医科大学免疫教研室
    2. 050030 石家庄,河北医科大学第一医院细胞治疗实验室
  • 收稿日期:2022-05-06 出版日期:2022-12-01
  • 通信作者: 张君
  • 基金资助:
    河北省自然科学基金资助(C2020206032); 温州市重大科技创新攻关项目资助(ZY2022027)

Research progress in the interaction mechanism between mesenchymalstem cells and macrophages

Tong Chen1, Fan Zhang2, Chengcheng Fang1, Quanhai Li1, Baoyong Yan2, Jun Zhang2,()   

  1. 1. Laboratory of Cell Therapy, First Hospital of Hebei Medical University, Shijiazhuang 050030, China; Department of Immunology, Hebei Medical University, Shijiazhuang 050011, China
    2. Laboratory of Cell Therapy, First Hospital of Hebei Medical University, Shijiazhuang 050030, China
  • Received:2022-05-06 Published:2022-12-01
  • Corresponding author: Jun Zhang
引用本文:

陈彤, 张帆, 房橙橙, 李全海, 闫宝勇, 张君. 间充质干细胞与巨噬细胞相互作用机制的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 372-377.

Tong Chen, Fan Zhang, Chengcheng Fang, Quanhai Li, Baoyong Yan, Jun Zhang. Research progress in the interaction mechanism between mesenchymalstem cells and macrophages[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(06): 372-377.

间充质干细胞(MSCs)主要通过旁分泌作用于免疫细胞而参与组织修复与重塑。巨噬细胞具有吞噬杀伤和免疫调节功能,与组织细胞协调应对病理和生理应激。在炎症反应中,MSCs能借助多种方式使促炎的M1型巨噬细胞向抗炎的M2型巨噬细胞转化,调控炎症因子、抑制炎症反应和减少组织细胞损伤;同时,炎症微环境中的巨噬细胞释放多种因子也对MSCs的生物学功能产生影响。本文综述了MSCs和巨噬细胞相互作用机制及双方信息交换的研究进展,涉及细胞因子分泌、旁分泌和细胞间直接接触等方式,为优化MSCs生物学功能、修复炎症性组织损伤提供策略和方案。

Mesenchymal stem cells (MSCs) mainly act on immune cells through the paracrine and participate in tissue repair and remodelling. Macrophages have the functions of phagocytosis and immune regulation and coordinate with many types of cells to cope with pathophysiological stress. In the inflammatory response, MSCs transform pro-inflammatory M1 macrophages into anti-inflammatory M2 macrophages in a variety of ways, regulate inflammatory factors, inhibit inflammatory responses and reduce tissue cell damage; At the same time, the release of multiple factors by macrophages in the inflammatory microenvironment also affects the biological function of MSCs. This review summarises the interaction mechanism between MSCs and macrophages, and the latest research progress in their information exchange, involving cytokine secretion, paracrine and intercellular direct contact. It will provide the strategy and scheme for optimizing MSCs' function to repair inflammatory tissue damage.

图1 间充质干细胞对巨噬细胞极化的调节机制注:PGE2为前列腺素-E2;COX-2为环氧化酶-2;IL-6为白细胞介素6;IL-6R为白细胞介素6受体;JAK激酶为非受体型酪氨酸蛋白激酶;STAT3为信号转导和转录激活因子3;miR-204为小非编码RNA-204;IL-1为白细胞介素1;IL-1RA为IL -1受体拮抗剂;TSG-6为肿瘤坏死因子诱导蛋白-6;CD44为归巢细胞黏附分子;IDO为吲哚胺-2,3-双加氧酶;IL-10为白细胞介素10
图2 巨噬细胞对MSCs成脂成骨能力的调节机制注:miR-690为小非编码RNA-690;miR-155为小非编码RNA-155;CXCR2为趋化因子受体2;PGE2为前列腺素-E2;EP2/EP4为E型前列腺素受体2/4;TNF-α为肿瘤坏死因子-α;BMP-2为骨形态发生蛋白2
4
Peet C, Ivetic A, Bromage DI, et al. Cardiac monocytes and macrophages after myocardial infarction[J]. Cardiovasc Res, 2020, 116(6):1101-1112.
5
Peng Y, Chen BQ, Zhao JL, et al. Effect of intravenous transplantation of hUCB-MSCs on M1/M2 subtype conversion in monocyte/macrophages of AMI mice[J]. Biomed Pharmacother, 2019, 111:624-630.
6
刘泉池,许晓明,彭露,等.巨噬细胞与间充质干细胞相互作用及其对缺血性心脏病的影响[J].心脏杂志, 2022, 34:(5):594-599.
7
Lu D, Xu Y, Liu Q, et al. Mesenchymal stem cell-macrophage crosstalk and maintenance of inflammatory microenvironment homeostasis[J]. Front Cell Dev Biol, 2021, 9:681171. doi: 10.3389/fcell.2021.681171.
8
孙瑶,吕海金,易小猛,等.间充质干细胞通过诱导M2型巨噬细胞治疗急性肺损伤[J]. 中山大学学报(医学版), 2019, 40(3):393-400.
9
Wang J, Liu Y, Ding H, et al. Mesenchymal stem cell-secreted prostaglandin E2 ameliorates acute liver failure via attenuation of cell death and regulation of macrophage polarization[J]. Stem Cell Res Ther, 2021, 12(1):15.doi: 10.1186/s13287-020-02070-2.
10
靳丽媛,邓子辉,张金英,等.间充质干细胞通过环氧化酶2影响慢性炎症损伤的巨噬细胞表型极化[J]. 中华老年心脑血管病杂志, 2017, 19(5):524-528.
11
Huang Q, Cheng X, Luo C, et al. Placental chorionic plate-derived mesenchymal stem cells ameliorate severe acute pancreatitis by regulating macrophage polarization via secreting TSG-6[J]. Stem Cell Res Ther, 2021, 12(1):337.doi: 10.1186/s13287-021-02411-9.
12
Wan YM, Wu HM, Li YH, et al. TSG-6 Inhibits oxidative stress and I-nduces M2 polarization of hepatic macrophages in mice with alcoholichepatitis via suppression of STAT3 activation[J]. Front Pharmacol, 2020, 11:10.doi: 10.3389/fphar.2020.00010.
13
赵吉玲,彭漪,彭智勇, 等.人脐血间充质干细胞分泌生物活性因子肿瘤坏死因子α-刺激基因-6蛋白对小鼠骨髓来源巨噬细胞亚型转化的影响[J].中国组织工程研究, 2022, 26(13):2012-2019.
14
Wang XF, Wang HS, Wang H, et al. The role of indoleamine 2,3-dioxy-genase (IDO) in immune tolerance: focus on macrophage polarization of THP-1 c-ells[J]. Cell Immunol, 2014, 289(1-2):42-48.
15
François M, Romieu-Mourez R, Li M, et al. Human MSCs suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and by stander M2 macrophage differentiation[J]. MolTher, 2012, 20(1):187-195.
16
Lee S, Zhang QZ, Karabucak B, et al. DPSCs from Inflamed Pulp Mod-ulate Macrophage Function via the TNF-α/IDO Axis[J]. J Dent Res, 2016, 95(11):1274-1281.
17
王立林,傅泽钦,廖延, 等. IFN-γ对人脐带间充质干细胞细胞因子分泌和免疫调节蛋白表达的体外细胞学研究[J]. 中国输血杂志2020, 33(9):865-871.
18
Dang J, Yang J, Yu Z, et al. Bone marrow mesenchymal stem cells enhance angiogenesis and promote fat retention in fat grafting via polarized macrophages[J]. Stem Cell Res Ther, 2022, 13(1):52.doi: 10.1186/s13287-022-02709-2.
19
李志伟,周号悦,刘湘粤,等.骨髓间充质干细胞培养液促进STAT3磷酸化诱导Raw264.7细胞向M2型极化[J]. 激光生物学报, 2020, 29(2):153-160.
20
杨睿. 外周血间充质干细胞通过STAT3介导的IL-10信号调控巨噬细胞极化的机制研究[D]. 遵义:遵义医科大学, 2020.
21
黄小会,赵欣,董晓惠, 等. IL-10参与调控巨噬细胞的极化[J]. 军事医学, 2018, 42(9):673-677.
22
Pilny E, Smolarczyk R, Jarosz-Biej M, et al. Human ADSC xenograft through IL-6 secretion activates M2 macrophages responsible for the repair of damaged muscle tissue[J]. Stem Cell Res Ther, 2019, 10(1):93.doi: 10.1186/s13287-019-1188-y.
23
付小龙. IL-6体外诱导巨噬细胞M2样分化的机制研究[D]. 重庆:第三军医大学, 2017.
24
钱娴娴,冯红超,宋宇峰. 口腔鳞癌中NF-κBp65、IL-6表达与巨噬细胞极化的关系[J]. 实用口腔医学杂志, 2020, 36(1):10-14.
25
Lee KC, Lin HC, Huang YH, et al. Allo-transplantation of mesenchymal stem cells attenuates hepatic injury through IL1Ra dependent macrophage switch in a mouse model of liver disease[J]. J Hepatol, 2015, 63(6):1405-1412.
26
Luz-Crawford P, Djouad F, Toupet K, et al. Mesenchymal stem cell de-rived interleukin 1 receptor antagonist promotes macrophage polarization and inhibits B cell differentiation[J]. Stem Cells, 2016, 34(2):483-492.
27
吴林,张斌,王倩梅,等.脂肪间充质干细胞来源外泌体对M1型巨噬细胞向M2型转化的影响[J]. 解放军医药杂志, 2019, 31(3):1-7.
28
Deng S, Zhou X, Ge Z, et al. Exosomes from adipose-derived mesench-ymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 pol-arization[J]. Int J Biochem Cell Biol, 2019, 114:105564. doi: 10.1016/j.biocel.2019.105564.
29
苏晓磊,汪坤,刘月,等.牙髓干细胞来源外泌体对急性肺损伤的作用及机制研究[J].军事医学, 2018, 42(2):130-137.
30
Bai X, Li J, Li L, et al. Extracellular vesicles from adipose tissue-derived stem cells affect notch-miR148a-3p axis to regulate polarization of macrophages and alleviate sepsis in mice[J]. Front Immunol, 2020, 11:1391.doi: 10.3389/fimmu.2020.01391.
31
Shen K, Jia Y, Wang X, et al. Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2 /HO-1 axis in macrophages[J]. Free RadicBiol Med, 2021, 165:54-66.
32
袁改利,杨东伟,罗莉梅,等.人脐带间充质干细胞外泌体携带微小RNA-204对心肌缺血再灌注小鼠模型巨噬细胞极化的影响及机制探究[J]. 中国医学科学院学报, 2022, 44(5):785-793.
33
Luk F, de Witte SF, Korevaar SS, et al. Inactivated mesenchymal stem cells maintain immunomodulatory capacity[J]. Stem Cells Dev, 2016, 25(18):1342-1354.
34
Gonçalves FDC, Luk F, Korevaar SS, et al. Membrane particles generat-ed from mesenchymal stromal cells modulate immune responses by sele-ctive targeting of pro-inflammatory monocytes[J]. Sci Rep, 2017, 7(1):12100. doi: 10.1038/s41598-017-12121-z.
35
Jackson MV, Morrison TJ, Doherty DF, et al. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS[J]. Stem Cells, 2016, 34(8):2210-2223.
36
Cao D, Ma F, Ouyang S, et al. Effects of macrophages and CXCR2 on adipogenic differentiation of bone marrow mesenchymal stem cells[J]. J Cell Physiol, 2019, 234(6):9475-9485.
37
Lu LY, Loi F, Nathan K, et al. Pro-inflammatory M1 macrophages promote Osteogenesis by mesenchymal stem cells via the COX-2-prostaglandin E2 pathway[J]. J Orthop Res, 2017, 35(11):2378-2385.
1
Yan W, Abu-El-Rub E, Saravanan S, et al. Inflammation in myocardial injury: Mesenchymal stem cells as potential immunomodulators[J]. Am J Physiol Heart CircPhysiol, 2019, 317(2):H213-H225.
2
杨春娟,杨晶涵,张丽丽,等.间充质干细胞在系统性红斑狼疮的免疫调节作用及应用[J].中华临床免疫和变态反应杂志, 2021, 15(06):684-689.
3
李佩霖,朱恒.间充质干细胞生物学特性的可塑性研究进展[J].中国实验血液学杂志, 2021, 29(2):629-632.
38
Li M, Guo X, Qi W, et al. Macrophage polarization plays roles in bone formation instructed by calcium phosphate ceramics[J]. J Mater Chem B, 2020, 8(9):1863-1877.
39
Nathank K, Lu LY, Lin T, et al. Precise immunomodulation of the m1 to m2 macrophage transition enhances mesenchymal stem cell osteogenesis and differs by sex[J]. Bone Joint Res, 2019, 8(10):481-488.
40
He XT, Li X, Yin Y, et al. The effect of conditioned media generated by polarized macrophages on the cellular behaviours of bone marrow mesenchymal stem cells[J]. J Cell Mol Med, 2018, 22(2):1302-1315.
41
Schlundt C, EI Khassawna T, Serra A, et al. Macrophages in bone fracture healing:Their essential role in endochondral ossification[J]. Bone, 2018, 106:78-89.
42
Guihard P, Danger Y, Brounais B, et al. Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depend on oncostatin m signaling[J]. Stem cells, 2012, 30(4):762-772.
43
Haversath M, Catelas I, Li X, et al. Pge2 and bmp-2 in bone and cartilage metabolism:2 intertwining pathways[J]. Can J PhysiolPharmacol, 2012, 90(11):1434-1445.
44
Zhao B. TNF and bone remodeling[J]. Curr Osteoporos Rep, 2017, 15(3):126-134.
45
Pilbeam C. Prostaglandins and bone[J]. Handb Exp Pharmacol, 2020, 262:157-175.
46
殷旻皓,刘浩,张永杰.巨噬细胞清道夫受体1通过JAK/STAT3信号通路调节骨髓间充质干细胞成骨分化[J]. 南京医科大学学报(自然科学版), 2020, 40(8):1105-1110.
47
刘文涛,冯兴超,杨毅, 等. M2型巨噬细胞外泌体诱导骨髓间充质干细胞的成骨分化[J]. 中国组织工程研究, 2023, 27 (6):840-845.
48
Li Z, Wang Y, Li S, et al. Exosomes derived from M2 macrophages facilitate osteogenesis and reduce adipogenesis of BMSCs[J]. Front Endocrinol (Lausanne), 2021, 12:680328.doi: 10.3389/fendo.2021.680328.
49
Cao D, Ma F, Ouyang S, et al. Effects of macrophages and CXCR2 on adipogenic differentiation of bone marrow mesenchymal stem cells[J]. J Cell Physiol, 2019, 234(6):9475-9485.
50
Ma H, Li YN, Song L, et al. Macrophages inhibit adipogenic differentiation of adipose tissue derived mesenchymal stem/stromal cells by producing pro-inflammatory cytokines[J]. Cell Biosci, 2020, 10:88. doi: 10.1186/s13578-020-00450-y.
51
Zhu Y, Zhang X, Yang K, et al. Mcrophage-derived apoptotic vesicles regulate fate commitment of mesenchymal stem cells via miR155[J]. Stem Cell Res Ther, 2022, 13(1):323. doi: 10.1186/s13287-022-03004-w.
52
黄庆雷,魏晓飞. 间充质干细胞免疫调节的可塑性[J]. 中国科学:生命科学, 2016, 46(7):799-808.
[1] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[2] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[3] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[4] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[5] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[6] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[7] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[8] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[9] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[10] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[11] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[12] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[13] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[14] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
[15] 张赟辉, 罗军, 刘栗丽, 汪宏, 耿克明. 腹膜透析与血液透析对老年终末期肾病患者营养状况及炎症反应的影响[J]. 中华临床医师杂志(电子版), 2023, 17(04): 419-423.
阅读次数
全文


摘要