切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (06) : 367 -371. doi: 10.3877/cma.j.issn.2095-1221.2022.06.007

综述

肠道菌群代谢产物与间充质干细胞相互作用的研究进展
彭聪1, 罗晓英1, 白阳秋1, 江小柯1, 张炳勇1,()   
  1. 1. 450003 郑州,河南省人民医院 (郑州大学人民医院)消化内科
  • 收稿日期:2022-04-22 出版日期:2022-12-01
  • 通信作者: 张炳勇
  • 基金资助:
    河南省卫健委医学科技攻关省部共建重大项目(SBGJ202001002)

Research progress in the interaction between intestinal flora metabolites and mesenchymal stem cells

Cong Peng1, Xiaoying Luo1, Yangqiu Bai1, Xiaoke Jiang1, Bingyong Zhang1,()   

  1. 1. Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
  • Received:2022-04-22 Published:2022-12-01
  • Corresponding author: Bingyong Zhang
引用本文:

彭聪, 罗晓英, 白阳秋, 江小柯, 张炳勇. 肠道菌群代谢产物与间充质干细胞相互作用的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 367-371.

Cong Peng, Xiaoying Luo, Yangqiu Bai, Xiaoke Jiang, Bingyong Zhang. Research progress in the interaction between intestinal flora metabolites and mesenchymal stem cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(06): 367-371.

间充质干细胞(MSCs)具有增殖分化和调节免疫的作用,在治疗多种自身免疫性疾病的过程中表现出良好的效果,应用前景广阔。多项研究显示肠道菌群的代谢产物可以影响MSCs的功能,而MSCs亦可对肠道菌群代谢产物的生成进行调控。本文就一些常见的肠道菌群代谢产物(短链脂肪酸、氧化三甲胺、胆汁酸和色氨酸代谢物)与MSCs的相互作用进行归纳总结,并探讨基于肠道菌群代谢产物靶向调控MSCs的可行策略,为包括自身免疫性疾病在内的多种疾病的研究提供新思路。

Due to the function of proliferation, differentiation and immune regulation, mesenchymal stem cells (MSCs) have broad application prospects and currently show promising results in treating various autoimmune diseases. Related research shows that the metabolites of intestinal flora affect the function of MSCs, and MSCs also regulate the production of intestinal flora metabolites. Based on previous studies, this article reviews the interaction between some common intestinal flora metabolites (short-chain fatty acids, trimethylamine oxide, bile acids, and tryptophan metabolites) and MSCs. In addition, some feasible strategies for targeted regulation of MSCs based on intestinal flora metabolites are discussed, which can provide new ideas for studying various diseases, including autoimmune diseases.

1
Hagan T, Cortese M, Rouphael N, et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans[J]. Cell, 2019, 178(6):1313-1328.
2
Bäckhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine[J]. Science, 2005, 307(5717):1915-1920.
3
O'Hara AM, Shanahan F. The gut flora as a forgotten organ[J]. EMBO Rep, 2006, 7(7):688-693.
4
Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7341):57-63.
5
Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4):223-237.
6
Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders[J]. Gut, 2021, 70(6):1174-1182.
7
Horta-Baas G, Sandoval-Cabrera A, Romero-Figueroa MDS. Modification of gut microbiota in inflammatory arthritis: highlights and future challenges[J]. Curr Rheumatol Rep, 2021, 23(8):67.doi: 10.1007/s11926-021-01031-9.
8
Pires A O, Mendes Pinheiro B, Teixeira F G, et al. Unveiling the differences of secretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: a proteomic analysis[J]. Stem Cells Dev, 2016, 25(14):1073-1083.
9
Naji A, Eitoku M, Favier B, et al. Biologicalfunctions of mesenchymal stem cells and clinical implications[J]. Cell Mol Life Sci, 2019, 76(17): 3323-3348.
10
Chen Y, Yu Q, Hu Y, et al. Current research and use of mesenchymal stem cells in the therapy of autoimmune diseases[J]. Curr Stem Cell Res Ther, 2019, 14(7):579-582.
11
Pixley J S. Mesenchymal stem cells to treat type 1 diabetes[J]. Biochim Biophys Acta Mol Basis Dis, 2020,1866(4):165315.doi: 10.1016/j.bbadis.2018.10.033.
12
Zhao L, Chen S, Yang P, et al. The role of mesenchymal stem cells in hematopoietic stem cell transplantation: prevention and treatment of graft-versus-host disease[J]. Stem Cell Res Ther, 2019, 10(1):182.doi: 10.1186/s13287-019-1287-9.
13
郭风宜,杨潇,高天舒. 肠道菌群在自身免疫性疾病中的研究进展[J]. 国际免疫学杂志, 2021, 44(1):91-96.
14
Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7(3):189-200.
15
Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity[J]. Nat Rev Immunol, 2016, 16(6):341-352.
16
Maslowski K M, Vieira A T, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461(7268):1282-1286.
17
Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis[J]. Immunity, 2014, 40(1): 128-139.
18
Thorburn AN, Mckenzie CI, Shen S, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites[J]. Nat Commun, 2015, 6:7320.doi: 10.1038/ncomms8320.
19
Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145):569-573.
20
Ren Y, Su S, Liu X, et al. Microbiota-derived short-chain fatty acids promote bmp signaling by inhibiting histone deacetylation and contribute to dentinogenic differentiation in murine incisor regeneration[J]. Stem Cells Dev, 2020, 29(18):1201-1214.
21
Iván J, Major E, Sipos A, et al. The short-chain fatty acid propionate inhibits adipogenic differentiation of human chorion-derived mesenchymal stem cells through the free fatty acid receptor 2[J]. Stem Cells Dev, 2017, 26(23):1724-1733.
22
Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43[J]. Nat Commun, 2013, 4:1829.doi: 10.1038/ncomms2852.
23
李欣欣,孟明耀,熊晶晶, 等. 肠道菌群相关代谢物丁酸的量效和时效对人脐带间充质干细胞增殖的影响[J]. 中国微生态学杂志, 2020, 32(1):11-16.
24
Killer M C, Nold P, Henkenius K, et al. Immunosuppressive capacity of mesenchymal stem cells correlates with metabolic activity and can be enhanced by valproic acid[J]. Stem Cell Res Ther, 2017, 8(1):100.doi: 10.1186/s13287-017-0553-y.
25
Saouaf SJ, Li B, Zhang G, et al. Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis[J]. Exp Mol Pathol, 2009, 87(2):99-104.
26
Tsai LK, Wang Z, Munasinghe J, et al. Mesenchymal stem cells primed with valproate and lithium robustly migrate to infarcted regions and facilitate recovery in a stroke model[J]. Stroke, 2011, 42(10):2932-2939.
27
Luo L, Chen Q, Yang L, et al. MSCs Therapy reverse the gut microbiota in hypoxia-induced pulmonary hypertension mice[J]. Front Physiol, 2021, 12:712139.doi: 10.3389/fphys.2021.712139.
28
Zhao LN, Ma SW, Xiao J, et al. Bone marrow mesenchymal stem cell therapy regulates gut microbiota to improve post-stroke neurological function recovery in rats[J]. World J Stem Cells, 2021, 13(12):1905-1917.
29
Schugar RC, Shih DM, Warrier M, et al. The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue[J]. Cell Rep, 2017, 19(12):2451-2461.
30
Wang H, Rong X, Zhao G, et al. The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer[J]. Cell Metab, 2022, 34(4):581-594.
31
Lin H, Liu T, Li X, et al. The role of gut microbiota metabolite trimethylamine N-oxide in functional impairment of bone marrow mesenchymal stem cells in osteoporosis disease[J]. Ann Transl Med, 2020, 8(16):1009.doi: 10.21037/atm-20-5307.
32
Li Y, Shi G, Han Y, et al. Therapeutic potential of human umbilical cord mesenchymal stem cells on aortic atherosclerotic plaque in a high-fat diet rabbit model[J]. Stem Cell Res Ther, 2021, 12(1):407.doi: 10.1186/s13287-021-02490-8.
33
De Vos W M, Tilg H, Van Hul M, et al. Gut microbiome and health: mechanistic insights[J]. Gut, 2022, 71(5):1020-1032.
34
Wahlström A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1):41-50.
35
Huang W, Ma K, Zhang J, et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration[J]. Science, 2006, 312(5771):233-236.
36
Sawitza I, Kordes C, Götze S, et al. Bile acids induce hepatic differentiation of mesenchymal stem cells[J]. Sci Rep, 2015, 5:13320.doi: 10.1038/srep13320.
37
Cha BH, Jung MJ, Moon BK, et al. Administration of tauroursodeoxycholic acid enhances osteogenic differentiation of bone marrow-derived mesenchymal stem cells and bone regeneration[J]. Bone, 2016, 83:73-81. doi: 10.1016/j.bone.2015.10.011.
38
王丽群,庞日朝,胡晓敏, 等. 肠道菌群对色氨酸代谢的影响研究进展[J]. 中国比较医学杂志, 2021, 31(4):129-136.
39
Borghi M, Puccetti M, Pariano M, et al. Tryptophan as a central hub for host/microbial symbiosis[J]. Int J Tryptophan Res, 2020, 13:1178646920919755. doi: 10.1177/1178646920919755.
40
Bosi A, Banfi D, Bistoletti M, et al. Tryptophan metabolites along the microbiota-gut-brain axis: an interkingdom communication system influencing the gut in health and disease[J]. Int J Tryptophan Res, 2020, 13:1178646920928984.doi: 10.1177/1178646920928984.
41
Comai S, Bertazzo A, Brughera M, et al. Tryptophan in health and disease[J]. Adv Clin Chem, 2020, 95:165-218.
42
Li X, Lu C, Fan D, et al. Human umbilical mesenchymal stem cells display therapeutic potential in rheumatoid arthritis by regulating interactions between immunity and gut microbiota via the aryl hydrocarbon receptor[J]. Front Cell Dev Biol, 2020, 8:131.doi: 10.3389/fcell.2020.00131.
43
王祖斌,朱一麟. hUC-MSCs治疗对免疫性血小板减少症患儿的免疫功能、色氨酸代谢通路以及相关基因表达的影响[J]. 海南医学院学报, 2016, 22(2):193-196.
44
Lu GM, Jiang LY, Huang DL, et al. Advanced platelet-rich fibrin extract treatment promotes the proliferation and differentiation of human adipose-derived mesenchymal stem cells through activation of tryptophan metabolism[J]. Curr Stem Cell Res Ther, 2021. doi: 10.2174/1574888X16666211206150934.
45
Henrick BM, Rodriguez L,Lakshmikanth T, et al. Bifidobacteria-mediated immune system imprinting early in life[J]. Cell, 2021, 184(15):3884-3898.e11.
46
Xing J, Ying Y, Mao C, et al. Hypoxia induces senescence of bone marrow mesenchymal stem cells via altered gut microbiota[J]. Nat Commun, 2018, 9(1):2020.doi: 10.1038/s41467-018-04453-9.
47
Sartori T, Santos ACA, Oliveira da Silva R, et al. Branched chain amino acids improve mesenchymal stem cell proliferation, reducing nuclear factor kappa B expression and modulating some inflammatory properties[J]. Nutrition, 2020,78:110935.doi: 10.1016/j.nut.2020.110935.
48
Lee YS, Kim TY, Kim Y, et al. Microbiota-derived lactate promotes hematopoiesis and erythropoiesis by inducing stem cell factor production from leptin receptor+ niche cells[J]. Exp Mol Med, 2021, 53(9):1319-1331.
49
Suez J, Elinav E. The path towards microbiome-based metabolite treatment[J]. Nat Microbiol, 2017, 2:17075.doi: 10.1038/nmicrobiol.2017.75.
[1] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[2] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[3] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[4] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[5] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[6] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[7] 乔小梅, 孔凯丽, 方敬爱, 张晓东. "肠-皮肤轴"与尿毒症皮肤病变的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 291-294.
[8] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[9] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[10] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[11] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 461-465.
[12] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[13] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[14] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
[15] 金泽平, 董晶, 柳云鹏, 汪阳. 菌群-肠道-脑轴与缺血性卒中危险因素关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 510-517.
阅读次数
全文


摘要