1 |
De Los Angeles A, Ferrari F, Xi R, et al. Hallmarks of pluripotency[J]. Nature, 2015, 525(7570):469-478.
|
2 |
Ying QL, Wray J, Nichols J, et al. The ground state of embryonic stem cell self-renewal[J]. Nature, 2008, 453(7194):519-523.
|
3 |
Tesar PJ, Chenoweth JG, Brook FA, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells[J]. Nature, 2007, 448(7150):196-199.
|
4 |
Yu L, Wei Y, Duan J, et al. Blastocyst-like structures generated from human pluripotent stem cells[J]. Nature, 2021, 591(7851):620-626.
|
5 |
Chan YS, Göke J, Ng JH, et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast[J]. Cell Stem Cell, 2013, 13(6):663-675.
|
6 |
Gafni O, Weinberger L, Mansour AA, et al. Derivation of novel human ground state naive pluripotent stem cells[J]. Nature, 2013, 504(7479):282-286.
|
7 |
Theunissen TW, Powell BE, Wang H, et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency[J]. Cell Stem Cell, 2014, 15(4):471-487.
|
8 |
Theunissen TW, Friedli M, He Y, et al. Molecular Criteria for Defining the Naive Human Pluripotent State[J]. Cell Stem Cell, 2016, 19(4):502-515.
|
9 |
Takashima Y, Guo G, Loos R, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human[J]. Cell, 2014, 158(6):1254-1269.
|
10 |
Taei A, Rasooli P, Braun T, et al. Signal regulators of human naive pluripotency[J]. Exp Cell Res, 2020, 389(2):111924.doi: 10.1016/j.yexcr.2020.111924.
|
11 |
Ware CB, Nelson AM, Mecham B, et al. Derivation of naive human embryonic stem cells[J]. Proc Natl Acad Sci U S A, 2014, 111(12):4484-4489.
|
12 |
Duggal G, Warrier S, Ghimire S, et al. Alternative routes to induce naive pluripotency in human embryonic stem cells[J]. Stem Cells, 2015, 33(9):2686-2698.
|
13 |
Park TS, Zimmerlin L, Evans-Moses R, et al. Chemical reversion of conventional human pluripotent stem cells to a naive-like state with improved multilineage differentiation potency[J]. J Vis Exp, 2018, (136):57921. doi: 10.3791/57921.
|
14 |
Szczerbinska I, Gonzales KAU, Cukuroglu E, et al. A chemically defined feeder-free system for the establishment and maintenance of the human naive pluripotent state[J]. Stem Cell Reports, 2019, 13(4):612-626.
|
15 |
Bredenkamp N, Stirparo GG, Nichols J, et al. The cell-surface marker sushi containing domain 2 facilitates establishment of human naive pluripotent stem cells[J]. Stem Cell Reports, 2019, 12(6):1212-1222.
|
16 |
De Los Angeles A. Generation of ERK-independent human and non-human primate pluripotent stem cells[J]. Curr Protoc Stem Cell Biol, 2019, 49(1):e85.doi: 10.1002/cpsc.85.
|
17 |
Smith A. Formative pluripotency: the executive phase in a developmental continuum[J]. Development, 2017, 144(3):365-373.
|
18 |
Kalkan T, Olova N, Roode M, et al. Tracking the embryonic stem cell transition from ground state pluripotency[J]. Development, 2017, 144(7):1221-1234.
|
19 |
Kinoshita M, Barber M, Mansfield W et al. Capture of mouse and human stem cells with features of formative pluripotency[J]. Cell Stem Cell, 2021, 28(12):2180.doi: 10.1016/j.stem.2021.11.002.
|
20 |
Boroviak T, Nichols J. Primate embryogenesis predicts the hallmarks of human naive pluripotency[J]. Development, 2017, 144(2):175-186.
|
21 |
Cornacchia D, Zhang C, Zimmer B, et al. Lipid deprivation induces a stable, naive-to-primed intermediate state of pluripotency in human PSCs[J]. Cell Stem Cell, 2019, 25(1):120-136.e10.
|
22 |
Khan SA, Park KM, Fischer LA, et al. Probing the signaling requirements for naive human pluripotency by high-throughput chemical screening[J]. Cell Rep, 2021, 35(11):109233.doi: 10.1016/j.celrep.2021.109233.
|
23 |
Yamauchi K, Ikeda T, Hosokawa M, et al. Overexpression of nuclear receptor 5A1 induces and maintains an intermediate state of conversion between primed and naive pluripotency[J]. Stem Cell Reports, 2020, 14(3):506-519.
|
24 |
Rostovskaya M, Stirparo GG, Smith A. Capacitation of human naive pluripotent stem cells for multi-lineage differentiation[J]. Development, 2019, 146(7):dev172916. doi: 10.1242/dev.172916.
|
25 |
Dong C, Fischer LA, Theunissen TW. Recent insights into the naive state of human pluripotency and its applications[J]. Exp Cell Res, 2019, 385(1):111645. doi: 10.1016/j.yexcr.2019.111645.
|
26 |
Kinoshita M, Barber M, Mansfield W, et al. Capture of mouse and human stem cells with features of formative pluripotency[J]. Cell Stem Cell, 2021, 28(3):453-471.e8.
|
27 |
Yu L, Wei Y, Sun HX, et al. Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification[J]. Cell Stem Cell, 2021, 28(3):550-567.e12.
|
28 |
De Los Angeles A. Parsing the pluripotency continuum in humans and non-human primates for interspecies chimera generation[J]. Exp Cell Res, 2020, 387(1):111747.doi: 10.1016/j.yexcr.2019.111747.
|
29 |
Pera MF, Rossant J. The exploration of pluripotency space: Charting cell state transitions in peri-implantation development[J]. Cell Stem Cell, 2021, 28(11):1896-1906.
|
30 |
Zassadowski F, Rochette-Egly C, Chomienne C, et al. Regulation of the transcriptional activity of nuclear receptors by the MEK/ERK1/2 pathway[J]. Cell Signal, 2012, 24(12):2369-2377.
|
31 |
Soszyńska A, Klimczewska K, Suwińska A. FGF/ERK signaling pathway: how it operates in mammalian preimplantation embryos and embryo-derived stem cells[J]. Int J Dev Biol, 2019, 63(3-4-5):171-186.
|
32 |
Roskoski R Jr. MEK1/2 dual-specificity protein kinases: structure and regulation[J]. Biochem Biophys Res Commun, 2012, 417(1):5-10.
|
33 |
Cruzalegui FH, Cano E, Treisman R. ERK activation induces phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry[J]. Oncogene, 2000, 18(56):7948-7957.
|
34 |
Murphy LO, Smith S, Chen RH, et al. Molecular interpretation of ERK signal duration by immediate early gene products[J]. Nat Cell Biol, 2002, 4(8):556-564.
|
35 |
Mavrothalassitis G, Ghysdael J. Proteins of the ETS family with transcriptional repressor activity[J]. Oncogene, 2000, 19(55):6524-6532.
|
36 |
Wang B, Krall EB, Aguirre AJ, et al. ATXN1L, CIC, and ETS transcription factors modulate sensitivity to MAPK pathway inhibition[J]. Cell Rep, 2017, 18(6):1543-1557.
|
37 |
Paronetto MP, Zalfa F, Botti F, et al. The nuclear RNA-binding protein Sam68 translocates to the cytoplasm and associates with the polysomes in mouse spermatocytes[J]. Mol Biol Cell, 2006, 17(1):14-24.
|
38 |
Zhao J, Yuan X, Frödin M, et al. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth[J]. Mol Cell, 2003, 11(2):405-413.
|
39 |
Formstecher E, Ramos JW, Fauquet M, et al. PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase[J]. Dev Cell, 2001, 1(2):239-250.
|
40 |
Lavoie H, Gagnon J, Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate[J]. Nat Rev Mol Cell Biol, 2020, 21(10):607-632.
|
41 |
Cai X, Li M, Vrana J, et al. Glycogen synthase kinase 3- and extracellular signal-regulated kinase-dependent phosphorylation of paxillin regulates cytoskeletal rearrangement[J]. Mol Cell Biol, 2006, 26(7):2857-2868.
|
42 |
Wortzel I, Seger R. The ERK Cascade: distinct functions within various subcellular organelles[J]. Genes Cancer, 2011, 2(3):195-209.
|
43 |
Eblen ST. Extracellular-Regulated Kinases: signaling from ras to erk substrates to control biological outcomes[J]. Adv Cancer Res, 2018, 138:99-142.
|
44 |
Aoidi R, Maltais A, Charron J. Functional redundancy of the kinases MEK1 and MEK2: Rescue of the Mek1 mutant phenotype by Mek2 knock-in reveals a protein threshold effect[J]. Sci Signal, 2016, 9(412):ra9.
|
45 |
Plotnikov A, Zehorai E, Procaccia S, et al. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation[J]. Biochim Biophys Acta, 2011, 1813(9):1619-1633.
|
46 |
Dvorak P, Hampl A. Basic fibroblast growth factor and its receptors in human embryonic stem cells[J]. Folia Histochem Cytobiol, 2005, 43(4):203-208.
|
47 |
Amit M, Carpenter MK, Inokuma MS, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture[J]. Dev Biol, 2000, 227(2):271-278.
|
48 |
Wang G, Zhang H, Zhao Y, et al. Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers[J]. Biochem Biophys Res Commun, 2005, 330(3):934-942.
|
49 |
Wang G, Zhang H, Zhao Y, et al. Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers[J]. Biochem Biophys Res Commun, 2005, 330(3):934-942.
|
50 |
Greber B, Lehrach H, Adjaye J. Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal[J]. Stem Cells, 2007, 25(2):455-464.
|
51 |
Bendall SC, Stewart MH, Menendez P, et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro[J]. Nature, 2007, 448(7157):1015-1021.
|
52 |
Haghighi F, Dahlmann J, Nakhaei-Rad S, et al. bFGF-mediated pluripotency maintenance in human induced pluripotent stem cells is associated with NRAS-MAPK signaling[J]. Cell Commun Signal, 2018, 16(1):96. doi: 10.1186/s12964-018-0307-1.
|
53 |
Ding VM, Boersema PJ, Foong LY, et al. Tyrosine phosphorylation profiling in FGF-2 stimulated human embryonic stem cells[J]. PLoS One, 2011, 6(3):e17538.doi: 10.1371/journal.pone.0017538.
|
54 |
Sudheer S, Bhushan R, Fauler B, et al. FGF inhibition directs BMP4-mediated differentiation of human embryonic stem cells to syncytiotrophoblast[J]. Stem Cells Dev, 2012, 21(16):2987-3000.
|
55 |
Levenstein ME, Ludwig TE, Xu RH, et al. Basic fibroblast growth factor support of human embryonic stem cell self-renewal[J]. Stem Cells, 2006, 24(3):568-574.
|
56 |
Brill LM, Xiong W, Lee KB, et al. Phosphoproteomic analysis of human embryonic stem cells[J]. Cell Stem Cell, 2009, 5(2):204-213.
|
57 |
Hawksworth OA, Coulthard LG, Taylor SM, et al. Brief report: complement C5a promotes human embryonic stem cell pluripotency in the absence of FGF2[J]. Stem Cells, 2015, 32(12):3278-3284. doi: 10.1002/stem.1801.
|
58 |
Dzobo K, Vogelsang M, Parker MI. Wnt/beta-catenin and MEK-ERK signaling are required for fibroblast-derived extracellular matrix-mediated endoderm differentiation of embryonic stem cells[J]. Stem Cell Rev, 2015, 11(5):761-773.
|
59 |
Bernardo AS, Faial T, Gardner L, et al. BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages[J]. Cell Stem Cell, 2011, 9(2):144-155.
|
60 |
Harding A, Cortez-Toledo E, Magner NL, et al. Highly Efficient Differentiation of Endothelial Cells from Pluripotent Stem Cells Requires the MAPK and the PI3K Pathways[J]. Stem Cells, 2017, 35(4):909-919.
|
61 |
Xin C,Zhu C, Jin Y, et al. Discovering the role of VEGF signaling pathway in mesendodermal induction of human embryonic stem cells[J]. Biochem Biophys Res Commun, 2021, 553:58-64.
|
62 |
Göke J, Chan YS, Yan J, et al. Genome-wide kinase-chromatin interactions reveal the regulatory network of ERK signaling in human embryonic stem cells[J]. Mol Cell, 2013, 50(6):844-855.
|
63 |
Greber B, Wu G, Bernemann C, et al. Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells[J]. Cell Stem Cell, 2010, 6(3):215-226.
|
64 |
Na J, Furue MK, Andrews PW. Inhibition of ERK1/2 prevents neural and mesendodermal differentiation and promotes human embryonic stem cell self-renewal[J]. Stem Cell Res, 2010, 5(2):157-169.
|
65 |
Das P, Ezashi T, Schulz LC, et al. Effects of fgf2 and oxygen in the bmp4-driven differentiation of trophoblast from human embryonic stem cells[J]. Stem Cell Res, 2007, 1(1):61-74.
|
66 |
Yu P, Pan G, Yu J, et al. FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation[J]. Cell Stem Cell, 2011, 8(3):326-334.
|
67 |
Kretzschmar M, Doody J, Massagué J. Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1[J]. Nature, 1997, 389(6651):618-622.
|
68 |
Luo K. Signaling Cross Talk between TGF-beta/Smad and other signaling pathways[J]. Cold Spring Harb Perspect Biol, 2017, 9(1):a022137. doi: 10.1101/cshperspect.a022137.
|
69 |
Ozair MZ, Noggle S, Warmflash A, et al. SMAD7 directly converts human embryonic stem cells to telencephalic fate by a default mechanism[J]. Stem Cells, 2013, 31(1):35-47.
|
70 |
Mossahebi-Mohammadi M, Quan M, Zhang JS, et al. FGF signaling pathway: A key regulator of stem cell pluripotency[J]. Front Cell Dev Biol, 2020, 8:79.doi: 10.3389/fcell.2020.00079.
|
71 |
Chen C, Zhang X, Wang Y, et al. Translational and post-translational control of human naïve versus primed pluripotency[J]. iScience, 2021, 25(1):103645.doi: 10.1016/j.isci.2021.103645.
|
72 |
Wang SH, Hao J, Zhang C, et al. KLF17 promotes human naive pluripotency through repressing MAPK3 and ZIC2[J]. Sci China Life Sci, 2022, 65(10):1985-1997.
|
73 |
Wang Y, Guo B, Xiao Z, et al. Long noncoding RNA CCDC144 NL-AS1 knockdown induces naive-like state conversion of human pluripotent stem cells[J]. Stem Cell Res Ther, 2019, 10(1):220.doi: 10.1186/s13287-019-1323-9.
|
74 |
Jiapaer Z, Li G, Ye D, et al. LincU preserves naive pluripotency by restricting ERK activity in embryonic stem cells[J]. Stem Cell Reports, 2018, 11(2):395-409.
|
75 |
An C, Feng G, Zhang J, et al. Overcoming autocrine FGF signaling-induced heterogeneity in naive human ESCs enables modeling of random X chromosome inactivation[J]. Cell Stem Cell, 2020, 27(3):482-97.e4.
|
76 |
Ficz G, Hore TA, Santos F, et al. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency[J]. Cell Stem Cell, 2013, 13(3):351-359.
|
77 |
Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts[J]. Nat Biotechnol, 2008,26(1):101-106.
|
78 |
Kim MO, Kim SH, Cho YY, et al. ERK1 and ERK2 regulate embryonic stem cell self-renewal through phosphorylation of Klf4[J]. Nat Struct Mol Biol, 2012, 19(3):283-290.
|
79 |
Li M, Izpisua Belmonte JC. Deconstructing the pluripotency gene regulatory network[J]. Nat Cell Biol, 2018, 20(4):382-392.
|
80 |
Choi J, Huebner AJ, Clement K, et al. Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells[J]. Nature, 2017, 548(7666):219-223.
|
81 |
Di Stefano B, Ueda M, Sabri S, et al. Reduced MEK inhibition preserves genomic stability in naive human embryonic stem cells[J]. Nat Methods, 2018, 15(9):732-740.
|
82 |
Keshet G, Benvenisty N. Large-scale analysis of imprinting in naive human pluripotent stem cells reveals recurrent aberrations and a potential link to FGF signaling[J]. Stem Cell Reports, 2021, 16(10):2520-2533.
|
83 |
Bayerl J, Ayyash M, Shani T, et al. Principles of signaling pathway modulation for enhancing human naive pluripotency induction[J]. Cell Stem Cell, 2021, 28(9):1549-1565.e12.
|
84 |
Lynch CJ, Bernad R, Martínez-Val A, et al. Global hyperactivation of enhancers stabilizes human and mouse naive pluripotency through inhibition of CDK8/19 Mediator kinases[J]. Nat Cell Biol, 2020, 22(10):1223-1238.
|
85 |
Kalkan T, Bornelöv S, Mulas C, et al. Complementary activity of ETV5, RBPJ, and TCF3 drives formative transition from naive pluripotency[J]. Cell Stem Cell, 2019, 24(5):785-801.e7.
|