1 |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
|
2 |
Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances[J]. Transl Lung Cancer Res, 2016, 5(3):288-300.
|
3 |
Gao J, Li HR, Jin C, et al. Strategies to overcome acquired resistance to EGFR TKI in the treatment of non-small cell lung cancer[J]. Clin Transl Oncol, 2019, 21(10):1287-1301.
|
4 |
Aramini B, Masciale V, Grisendi G, et al. Dissecting tumor growth: the role of cancer stem cells in drug resistance and recurrence[J]. Cancers (Basel), 2022, 14(4):976. doi: 10.3390/cancers14040976.
|
5 |
Shien K, Toyooka S, Yamamoto H, et al. Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells[J]. Cancer Res, 2013, 73(10):3051-3061.
|
6 |
Diehn M, Cho RW, Lobo NA, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells[J]. Nature, 2009, 458(7239):780-783.
|
7 |
Conde I, Ribeiro AS, Paredes J. Breast cancer stem cell membrane biomarkers: therapy targeting and clinical implications[J]. Cells, 2022, 11(6):934. doi: 10.3390/cells11060934.
|
8 |
Dianat-Moghadam H, Mahari A, Salahlou R, et al. Immune evader cancer stem cells direct the perspective approaches to cancer immunotherapy[J]. Stem Cell Res Ther, 2022, 13(1):150. doi: 10.1186/s13287-022-02829-9.
|
9 |
Clarke MF. Clinical and therapeutic implications of cancer stem cells. Reply[J]. N Engl J Med, 2019, 381(10):e19. doi: 10.1056/NEJMc1908886.
|
10 |
Dobson HE, Ruan S, Chang AE, et al. Targeting cancer stem cells via integrin beta4[J]. Oncotarget, 2021, 12(18):1850-1858.
|
11 |
Tsochantaridis I, Voulgaridou GP, Giatromanolaki A, et al. Profiling of aldehyde dehydrogenase isoforms in in vitro formed tumorspheres[J]. Anticancer Res, 2021, 41(11):5481-5488.
|
12 |
He J, Huang Z, Han L, et al. Mechanisms and management of 3rdgeneration EGFRTKI resistance in advanced nonsmall cell lung cancer (Review)[J]. Int J Oncol, 2021, 59(5):90. doi: 10.3892/ijo.2021.5270.
|
13 |
Reita D, Pabst L, Pencreach E, et al. Molecular mechanism of EGFR-TKI resistance in EGFR-mutated non-small cell lung cancer: application to biological diagnostic and monitoring[J]. Cancers (Basel), 2021, 13(19):4926. doi: 10.3390/cancers13194926.
|
14 |
Hu F, Li C, Zheng X, et al. Lung adenocarcinoma resistance to therapy with EGFRtyrosine kinase inhibitors is related to increased expression of cancer stem cell markers SOX2, OCT4 and NANOG[J]. Oncol Rep, 2020, 43(2):727-735.
|
15 |
Hsu LC, Chang WC, Hoffmann I, et al. Molecular analysis of two closely related mouse aldehyde dehydrogenase genes: identification of a role for Aldh1, but not Aldh-pb, in the biosynthesis of retinoic acid[J]. Biochem J, 1999, 339(Pt 2):387-395.
|
16 |
Orywal K, Jelski W, KozLowski MD, et al. Activity of alcohol dehydrogenase and aldehyde dehydrogenase in lung cancer cells[J]. Anticancer Res, 2020, 40(7):3857-3863.
|
17 |
Corominas-Faja B, Oliveras-Ferraros C, Cuyas E, et al. Stem cell-like ALDH(bright) cellular states in EGFR-mutant non-small cell lung cancer: a novel mechanism of acquired resistance to erlotinib targetable with the natural polyphenol silibinin[J]. Cell Cycle, 2013, 12(21):3390-3404.
|
18 |
Yiming R, Takeuchi Y, Nishimura T, et al. MUSASHI-2 confers resistance to third-generation EGFR-tyrosine kinase inhibitor osimertinib in lung adenocarcinoma[J]. Cancer Sci, 2021, 112(9):3810-3821.
|
19 |
WU L, YU Y, XU L, et al. TROY modulates cancer stem-like cell properties and gefitinib resistance through EMT signaling in non-small cell lung cancer[J]. Front Genet, 2022, 13:881875. doi: 10.3389/fgene.2022.881875.
|
20 |
Vora P, Venugopal C, Salim SK, et al. The rational development of CD133-targeting immunotherapies for glioblastoma[J]. Cell Stem Cell, 2020, 26(6):832-844.e6.
|
21 |
彭聪, 李盼, 杨明强, 等.干扰FOXC1逆转非小细胞肺癌吉非替尼耐药的作用[J]. 中国肺癌杂志, 2021, 24(8):538-547.
|
22 |
Yamashita N, So T, Miyata T, et al. Triple-negative expression (ALDH1A1-/CD133-/mutant p53-) cases in lung adenocarcinoma had a good prognosis[J]. Sci Rep, 2022, 12(1):1473. doi: 10.1038/s41598-022-05176-0.
|
23 |
Chen YC, Hsu HS, Chen YW, et al. Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells[J]. PLoS One, 2008, 3(7):e2637. doi: 10.1371/journal.pone.0002637.
|
24 |
Wang J, Li W, Zheng X, et al. Research progress on the forkhead box C1[J]. Oncotarget, 2017, 9(15):12471-12478.
|
25 |
Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review[J]. Clin Transl Med, 2018, 7(1):18. doi: 10.1186/s40169-018-0198-1.
|
26 |
Goodell MA, Brose K, Paradis G, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo[J]. J Exp Med, 1996, 183(4):1797-1806.
|
27 |
Bruckmueller H, Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding?[J]. Expert Opin Drug Metab Toxicol, 2021, 17(4):369-396.
|
28 |
An Y, Ongkeko WM. ABCG2: the key to chemoresistance in cancer stem cells?[J]. Expert Opin Drug Metab Toxicol, 2009, 5(12):1529-1542.
|
29 |
Hu YP, Tao LY, Wang F, et al. Secalonic acid D reduced the percentage of side populations by down-regulating the expression of ABCG2[J]. Biochem Pharmacol, 2013, 85(11):1619-1625.
|
30 |
Zhang Y, Vagiannis D, Budagaga Y, et al. Sonidegib potentiates the cancer cells' sensitivity to cytostatic agents by functional inhibition of ABCB1 and ABCG2 in vitro and ex vivo[J]. Biochem Pharmacol, 2022, 199:115009. doi: 10.1016/j.bcp.2022.115009.
|
31 |
Ho MM, Ng AV, Lam S, et al. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells[J]. Cancer Res, 2007, 67(10):4827-4833.
|
32 |
Liao CH, Tzeng YT, Lai GM, et al. Omega-3 fatty acid-enriched fish oil and selenium combination modulates endoplasmic reticulum stress response elements and reverses acquired gefitinib resistance in HCC827 lung adenocarcinoma cells[J]. Mar Drugs, 2020, 18(8):399. doi: 10.3390/md18080399.
|
33 |
Wang CY, Huang CS, Yang YP, et al. The subpopulation of CD44-positive cells promoted tumorigenicity and metastatic ability in lung adenocarcinoma[J]. J Chin Med Assoc, 2019, 82(3):196-201.
|
34 |
Liu J, Xiao Z, Wong SK, et al. Lung cancer tumorigenicity and drug resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells[J]. Oncotarget, 2013, 4(10):1698-1711.
|
35 |
Yaghobi Z, Movassaghpour A, Talebi M, et al. The role of CD44 in cancer chemoresistance: A concise review[J]. Eur J Pharmacol, 2021, 903:174147. doi: 10.1016/j.ejphar.2021.174147.
|
36 |
Sauzay C, Voutetakis K, Chatziioannou A, et al. CD90/Thy-1, a cancer-associated cell surface signaling molecule[J]. Front Cell Dev Biol, 2019, 7:66. doi: 10.3389/fcell.2019.00066.
|
37 |
Yang J, Zhan XZ, Malola J, et al. The multiple roles of Thy-1 in cell differentiation and regeneration[J]. Differentiation, 2020, 113:38-48.
|
38 |
Zhao M, Zhang Y, Zhang H, et al. Hypoxia-induced cell stemness leads to drug resistance and poor prognosis in lung adenocarcinoma[J]. Lung Cancer, 2015, 87(2):98-106.
|
39 |
Zhang H, Chen F, He Y, et al. Sensitivity of non-small cell lung cancer to erlotinib is regulated by the Notch/miR-223/FBXW7 pathway[J]. Biosci Rep, 2017, 37(3):BSR20160478. doi: 10.1042/BSR20160478.
|
40 |
Xie M, He CS, Wei SH, et al. Notch-1 contributes to epidermal growth factor receptor tyrosine kinase inhibitor acquired resistance in non-small cell lung cancer in vitro and in vivo[J]. Eur J Cancer, 2013, 49(16):3559-3572.
|
41 |
Diluvio G, Del Gaudio F, Giuli MV, et al. NOTCH3 inactivation increases triple negative breast cancer sensitivity to gefitinib by promoting EGFR tyrosine dephosphorylation and its intracellular arrest[J]. Oncogenesis, 2018, 7(5):42. doi: 10.1038/s41389-018-0051-9.
|
42 |
Zhang Y, Chen B, Wang Y, et al. NOTCH3 overexpression and posttranscriptional regulation by miR-150 were associated with EGFR-TKI resistance in lung adenocarcinoma[J]. Oncol Res, 2019, 27(7):751-761.
|
43 |
Leon G, MacDonagh L, Finn SP, et al. Cancer stem cells in drug resistant lung cancer: Targeting cell surface markers and signaling pathways[J]. Pharmacol Ther, 2016, 158:71-90.
|
44 |
Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017, 169(6):985-999.
|
45 |
Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy[J]. J Cell Physiol, 2019, 234(6):8381-8395.
|
46 |
Lin S, Zhen Y, Guan Y, et al. Roles of Wnt/beta-catenin signaling pathway regulatory long non-coding RNAs in the pathogenesis of non-small cell lung cancer[J]. Cancer Manag Res, 2020, 12:4181-4191.
|
47 |
Yoo SB, Kim YJ, Kim H, et al. Alteration of the E-cadherin/beta-catenin complex predicts poor response to epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) treatment[J]. Ann Surg Oncol, 2013, 3:S545-552.
|
48 |
Togashi Y, Hayashi H, Terashima M, et al. Inhibition of beta-catenin enhances the anticancer effect of irreversible EGFR-TKI in EGFR-mutated non-small-cell lung cancer with a T790M mutation[J]. J Thorac Oncol, 2015, 10(1):93-101.
|
49 |
Wu J, He X, Xiong Z, et al. Bruceine H mediates EGFR-TKI drug persistence in NSCLC by Notch3-dependent beta-catenin activating FOXO3a signaling[J]. Front Oncol, 2022, 12:855603. doi: 10.3389/fonc.2022.855603.
|
50 |
Li K, Mo C, Gong D, et al. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of beta-catenin[J]. Cancer Lett, 2017, 400:194-202.
|
51 |
Lee HJ, Min HY, Yong YS, et al. A novel C-terminal heat shock protein 90 inhibitor that overcomes STAT3-Wnt-β-catenin signaling-mediated drug resistance and adverse effects[J]. Theranostics, 2022, 12(1):105-125.
|
52 |
Wang J, Zhou P, Wang X, et al. Rab25 promotes erlotinib resistance by activating the beta1 integrin/AKT/beta-catenin pathway in NSCLC[J]. Cell Prolif, 2019, 52(3):e12592. doi: 10.1111/cpr.12592.
|
53 |
Giroux-Leprieur E, Costantini A, Ding VW, et al. Hedgehog signaling in lung cancer: from oncogenesis to cancer treatment resistance[J]. Int J Mol Sci, 2018, 19(9):2835. doi: 10.3390/ijms19092835.
|
54 |
Moustafa EM, Abdel Salam HS, Mansour SZ. Withania somnifera modulates radiation-induced generation of lung cancer stem cells via restraining the hedgehog signaling factors[J]. Dose Response, 2022, 20(1):15593258221076711. doi: 10.1177/15593258221076711.
|
55 |
Ahmad A, Maitah MY, Ginnebaugh KR, et al. Inhibition of hedgehog signaling sensitizes NSCLC cells to standard therapies through modulation of EMT-regulating miRNAs[J]. J Hematol Oncol, 2013, 6(1):77. doi: 10.1186/1756-8722-6-77.
|
56 |
Chen H, Yang D, Wang Y, et al. Activation of the hedgehog pathway mediates resistance to epidermal growth factor receptor inhibitors in non-small cell lung cancer[J]. J Cancer, 2022, 13(3):987-997.
|
57 |
He X, Smith SE, Chen S, et al. Tumor-initiating stem cell shapes its microenvironment into an immunosuppressive barrier and pro-tumorigenic niche[J]. Cell Rep, 2021, 36(10):109674.doi: 10.1016/j.celrep.2021.109674.
|
58 |
Chen WJ, Ho CC, Chang YL, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling[J]. Nat Commun, 2014, 5:3472. doi: 10.1038/ncomms4472.
|
59 |
Tsuyada A, Chow A, Wu J, et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells[J]. Cancer Res, 2012, 72(11):2768-2779.
|
60 |
Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress[J]. Mol Cell, 2010, 40(2):294-309.
|
61 |
Liu L, Salnikov AV, Bauer N, et al. Triptolide reverses hypoxia-induced epithelial-mesenchymal transition and stem-like features in pancreatic cancer by NF-kappaB downregulation[J]. Int J Cancer, 2014, 134(10):2489-2503.
|
62 |
Vallee A, Lecarpentier Y, Vallee JN. The key role of the WNT/beta-catenin pathway in metabolic reprogramming in cancers under normoxic conditions[J]. Cancers (Basel), 2021, 13(21):5557.doi: 10.3390/cancers13215557.
|
63 |
Xu XX, Liu C, Liu Y, et al. Enrichment of cancer stem cell-like cells by culture in alginate gel beads[J]. J Biotechnol, 2014, 177:1-12.
|
64 |
Gkountakos A, Centonze G, Vita E, et al. Identification of targetable liabilities in the dynamic metabolic profile of EGFR-mutant lung adenocarcinoma: Thinking beyond genomics for overcoming EGFR TKI resistance[J]. Biomedicines, 2022, 10(2):277. doi: 10.3390/biomedicines10020277.
|
65 |
Liu L, Wang C, Li S, et al. Tumor immune microenvironment in epidermal growth factor receptor-mutated non-small cell lung cancer before and after epidermal growth factor receptor tyrosine kinase inhibitor treatment: a narrative review[J]. Transl Lung Cancer Res, 2021, 10(9):3823-3839.
|