切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2023, Vol. 13 ›› Issue (01) : 45 -52. doi: 10.3877/cma.j.issn.2095-1221.2023.01.006

综述

RNA m6A甲基化修饰调控异常在乳腺癌转移中作用的研究新进展
吴亚婷1, 张胜行1, 王水良1,()   
  1. 1. 350025 福州,厦门大学医学院附属东方医院福建省适配体技术重点实验室;350025 福州,福建医科大学福总临床医学院 (第九〇〇医院)全军临床检验医学研究所
  • 收稿日期:2022-10-17 出版日期:2023-02-01
  • 通信作者: 王水良
  • 基金资助:
    国家自然科学基金面上项目(81772848); 福建省科技创新联合资金项目(2017Y9127); 联勤保障部队第九〇〇医院院立课题重点项目(2021ZD05)

Research progress in the role of dysregulated RNA m6A modification in breast cancer metastasis

Yating Wu1, Shenghang Zhang1, Shuiliang Wang1,()   

  1. 1. Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou 350025, China; Institute for Clinical Laboratory Medicine of PLA, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou 350025, China
  • Received:2022-10-17 Published:2023-02-01
  • Corresponding author: Shuiliang Wang
引用本文:

吴亚婷, 张胜行, 王水良. RNA m6A甲基化修饰调控异常在乳腺癌转移中作用的研究新进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 45-52.

Yating Wu, Shenghang Zhang, Shuiliang Wang. Research progress in the role of dysregulated RNA m6A modification in breast cancer metastasis[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(01): 45-52.

乳腺癌转移是导致患者生存预后差的重要原因,目前对其分子机制的认识仍有限。RNA N6-甲基腺苷(m6A)甲基化修饰是近十余年颇受关注的基因转录后水平表观调控新机制,它在乳腺癌转移等恶性生物学中的重要作用也日益凸显。特定RNA的m6A甲基化修饰主要受甲基转移酶复合体(MTC)和RNA去甲基酶影响,如肥胖相关蛋白(FTO)等动态调控;而m6A甲基化修饰后的RNA还需要"解读"蛋白对其的解析才能进一步发挥特定的生物学功能。本综述总结了介导RNA m6A甲基化修饰的"写入蛋白"、"擦除蛋白"和"解读蛋白"等各组分调控异常在乳腺癌转移中的作用及其相关分子机制方面的研究新进展,并就未来乳腺癌转移的RNA m6A甲基化修饰失调控的精准检测和基于新分子机制的靶向治疗新策略开发作一展望。

Metastasis is an important cause of poor survival and prognosis of patients with breast cancer; however, our current knowledge of its underlying molecular mechanism is limited. RNA N6-methyladenosine (m6A) modification is a novel mechanism of epi-transcriptional regulation of gene expression at the posttranscriptional level that has attracted much attention in the past decade. Its important role in malignant biology such as breast cancer metastasis is emerging now. The m6A modification of specific RNA is dynamically regulated by the methyltransferase complex (MTC) and RNA demethylases such as fat mass and obesity-associated protein (FTO) . The biological function of RNA that has undergone the m6A modification depends on the interpretation of its ''reader'' protein. This review summarizes the latest research progress in the role of dysregulated various components of RNA m6A modification including m6A ''writers'', ''erasers'' and ''readers'' in breast cancer metastasis as well as their underlying molecular mechanisms. Meanwhile, the future directions of development of precise detection of dysregulated RNA m6A modification in breast cancer metastasis and new targeted therapy strategies based on novel molecular mechanisms are also prospected.

图1 RNA m6A甲基化动态修饰过程及其生物学功能解析模式[16,18,19,20]注:RNA为核糖核酸;m6A为N6-甲基腺苷;METTL3为甲基转移酶样蛋白3;METTL14为甲基转移酶样蛋白14;WTAP为肾母细胞瘤1相关蛋白;ZC3H13为含CCCH锌指蛋白13;RBM15/RBM15B为RNA结合模体蛋白15/15B;FTO为肥胖相关蛋白;ALKBH5为AlkB同源蛋白5;YTHDC1/2和YTHDF1/2/3分别为YTH结构域家族成员C1/2和F1/2/3;IGF2BP1/2/3为胰岛素样生长因子2 mRNA结合蛋白家族成员1/2/3;hnRNPC、hnRNPG和hnRNPCA2B1分别为核不均一性核糖核蛋白家族成员C、G和A2B1
图2 RNA m6A甲基化修饰失调控在乳腺癌转移中的作用注:MALAT1为转移相关肺腺癌转录本-1;KRT7为角蛋白7;SOX2为SRY-盒2;COL3A1为III型胶原蛋白α1链;CXCR4为趋化因子受体4;SMC1A为染色体结构稳定蛋白1A;NANOG为NANOG同源框蛋白;BNIP3为Bcl-2/E1B-19kDa相互作用蛋白3;APC2为结肠腺瘤性息肉病基因2;AXIN1为轴蛋白1;SMAD3为SMAD家族成员3;FOXM1为叉头盒M1;PKM2为丙酮酸激酶M2;ST6GALNAC5为α2, 6-唾液酰转移酶;ZEB1为锌指E盒结合同源框1;HSPD1为热休克蛋白家族D成员1;RBM8A为RNA结合基元蛋白8A;G3BP1为GTP酶活化蛋白结合蛋白1;PR为孕激素受体;PFN2为肌动蛋白抑制蛋白2
表1 RNA m6A甲基化修饰各组分在乳腺癌转移中的作用及其调控靶基因概览
1
Thennavan A, Beca F, Xia Y, et al. Molecular analysis of TCGA breast cancer histologic types[J]. Cell Genom, 2021, 1(3):100067. doi: 10.1016/j.xgen.2021.100067.
2
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
3
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132.
4
Britt KL, Cuzick J, Phillips KA. Key steps for effective breast cancer prevention[J]. Nat Rev Cancer, 2020, 20(8):417-436.
5
Liang Y, Zhang H, Song X, et al. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets[J]. Semin Cancer Biol, 2020, 60:14-27.
6
Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis[J]. Science, 2011, 331(6024):1559-1564.
7
李卓林, 贾如雪, 吴亚婷, 等. 肿瘤转移的分子机制及靶向干预研究新进展[J/CD]. 中华细胞与干细胞杂志(电子版), 2022, 12 (1):51-58.
8
Zhang B, Gu Y, Jiang G. Expression and prognostic characteristics of m6A RNA methylation regulators in breast cancer[J]. Front Genet, 2020, 11:604597.
9
Boccaletto P, Stefaniak F, Ray A, et al. MODOMICS: a database of RNA modification pathways. 2021 update[J]. Nucleic Acids Res, 2022, 50(D1):D231-D235.
10
Kan RL, Chen J, Sallam T. Crosstalk between epitranscriptomic and epigenetic mechanisms in gene regulation[J]. Trends Genet, 2022, 38(2):182-193.
11
Wiener D, Schwartz S. The epitranscriptome beyond m6A[J]. Nat Rev Genet, 2021, 22(2):119-131.
12
Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2):177-189.
13
Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12):885-887.
14
Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1):18-29.
15
Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation[J]. Cell, 2017, 169(7):1187-1200.
16
Huang H, Weng H, Chen J. The biogenesis and precise control of RNA m6A methylation[J]. Trends Genet, 2020, 36(1):44-52.
17
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485(7397):201-206.
18
Deng LJ, Deng WQ, Fan SR, et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond[J]. Mol Cancer, 2022, 21(1):52.doi: 10.1186/s12943-022-01510-2.
19
An Y, Duan H. The role of m6A RNA methylation in cancer metabolism[J]. Mol Cancer, 2022, 21(1):14.doi: 10.1186/s12943-022-01500-4.
20
Liu L, Li H, Hu D, et al. Insights into N6-methyladenosine and programmed cell death in cancer[J]. Mol Cancer, 2022, 21(1):32. doi: 10.1186/s12943-022-01508-w.
21
Liu Y, Zhu T, Jiang Y, et al. The key role of RNA modification in breast cancer[J]. Front Cell Dev Biol, 2022, 10:885133.doi: 10.3389/fcell.2022.885133.
22
Zheng F, Du F, Qian H, et al. Expression and clinical prognostic value of m6A RNA methylation modification in breast cancer[J]. Biomark Res, 2021, 9(1):28.doi: 10.1186/s40364-021-00285-w.
23
Tai J, Wang L, Guo H, et al. Prognostic implications of N6-methyladenosine RNA regulators in breast cancer[J]. Sci Rep, 2022, 12(1):1222. doi: 10.1038/s41598-022-05125-x.
24
Fang Z, Mei W, Qu C, et al. Role of m6A writers, erasers and readers in cancer[J]. Exp Hematol Oncol, 2022, 11(1):45.doi: 10.1186/s40164-022-00298-7.
25
Wang T, Kong S, Tao M, er al. The potential role of RNA N6-methyladenosine in cancer progression[J]. Mol Cancer, 2020, 19(1):88.doi: 10.1186/s12943-020-01204-7.
26
Zheng F, Du F, Zhao J, et al. The emerging role of RNA N6-methyladenosine methylation in breast cancer[J]. Biomark Res, 2021, 9(1):39.doi: 10.1186/s40364-021-00295-8.
27
Zhao C, Ling X, Xia Y, et al. The m6A methyltransferase METTL3 controls epithelial-mesenchymal transition, migration and invasion of breast cancer through the MALAT1/miR-26b/HMGA2 axis[J]. Cancer Cell Int, 2021, 21(1):441.doi: 10.1186/s12935-021-02113-5.
28
Chen F, Chen Z, Guan T, et al. N6-methyladenosine regulates mRNA stability and translation efficiency of KRT7 to promote breast cancer lung metastasis[J]. Cancer Res, 2021, 81(11):2847-2860.
29
Ramamoorthi G, Kodumudi K, Gallen C, et al. Disseminated cancer cells in breast cancer: Mechanism of dissemination and dormancy and emerging insights on therapeutic opportunities[J]. Semin Cancer Biol, 2022, 78:78-89.
30
Xie J, Ba J, Zhang M, et al. The m6A methyltransferase METTL3 promotes the stemness and malignant progression of breast cancer by mediating m6A modification on SOX2[J]. J BUON, 2021, 26(2):444-449.
31
Li Z, Yang HY, Dai XY, et al. CircMETTL3, upregulated in a m6A-dependent manner, promotes breast cancer progression[J]. Int J Biol Sci, 2021, 17(5):1178-1190.
32
Ruan HG, Gu WC, Xia W, et al. METTL3 is suppressed by circular RNA circMETTL3/miR-34c-3p signaling and limits the tumor growth and metastasis in triple negative breast cancer[J]. Front Oncol, 2021, 11:778132.doi: 10.3389/fonc.2021.778132.
33
Shi Y, Zheng C, Jin Y, et al. Reduced expression of METTL3 promotes metastasis of triple-negative breast cancer by m6A methylation-mediated COL3A1 up-regulation[J]. Front Oncol, 2020, 10:1126.doi: 10.3389/fonc.2020.01126.
34
Guan Q, Lin H, Miao L, et al. Functions, mechanisms, and therapeutic implications of METTL14 in human cancer[J]. J Hematol Oncol, 2022, 15(1):13.doi: 10.1186/s13045-022-01231-5.
35
Gong PJ, Shao YC, Yang Y, et al. Analysis of N6-methyladenosine methyltransferase reveals METTL14 and ZC3H13 as tumor suppressor genes in breast cancer[J]. Front Oncol, 2020, 10:578963.doi: 10.3389/fonc.2020.578963.
36
Zhou H, Yin K, Zhang Y, et al. The RNA m6A writer METTL14 in cancers: Roles, structures, and applications[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2):188609.doi: 10.1016/j.bbcan.2021.188609.
37
Dong XF, Wang Y, Huang BF, et al. Downregulated METTL14 expression correlates with breast cancer tumor grade and molecular classification[J]. Biomed Res Int, 2020, 2020:8823270.doi: 10.1155/2020/8823270.
38
Wu L, Wu D, Ning J, et al. Changes of N6-methyladenosine modulators promote breast cancer progression[J]. BMC Cancer, 2019, 19(1):326. doi: 10.1186/s12885-019-5538-z.
39
Sun T, Wu Z, Wang X, et al. LNC942 promoting METTL14-mediated m6A methylation in breast cancer cell proliferation and progression[J]. Oncogene, 2020, 39(31):5358-5372.
40
Wang CQ, Tang CH, Wang Y, et al. Upregulated WTAP expression appears to both promote breast cancer growth and inhibit lymph node metastasis[J]. Sci Rep, 2022, 12(1):1023. doi: 10.1038/s41598-022-05035-y.
41
Qian JY, Gao J, Sun X, et al. KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner[J]. Oncogene, 2019, 38(33):6123-6141.
42
Zhang X, Dai XY, Qian JY, et al. SMC1A regulated by KIAA1429 in m6A-independent manner promotes EMT progress in breast cancer[J]. Mol Ther Nucleic Acids, 2021, 27:133-146.
43
Niu Y, Lin Z, Wan A, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3[J]. Mol Cancer, 2019, 18(1):46. doi: 10.1186/s12943-019-1004-4.
44
Xu Y, Ye S, Zhang N, et al. The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer[J]. Cancer Commun (Lond), 2020, 40(10):484-500.
45
Jeschke J, Collignon E, Al Wardi C, et al. Downregulation of the FTO m6A RNA demethylase promotes EMT-mediated progression of epithelial tumors and sensitivity to Wnt inhibitors[J]. Nat Cancer, 2021, 2(6):611-628.
46
Qu J, Yan H, Hou Y, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential[J]. J Hematol Oncol. 2022 Jan 21;15(1):8.doi: 10.1186/s13045-022-01224-4.
47
Tang B, Yang Y, Kang M, et al. m6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling[J]. Mol Cancer, 2020, 19(1):3. doi: 10.1186/s12943-019-1128-6.
48
Jin D, Guo J, Wu Y, Y et al. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC[J]. Mol Cancer, 2020, 19(1):40.doi: 10.1186/s12943-020-01161-1.
49
Fry NJ, Law BA, Ilkayeva OR, et al. N6-methyladenosine contributes to cellular phenotype in a genetically-defined model of breast cancer progression[J]. Oncotarget, 2018, 9(58):31231-31243.
50
Wu L, Wu D, Ning J, et al. Changes of N6-methyladenosine modulators promote breast cancer progression[J]. BMC Cancer, 2019, 19(1):326.doi: 10.1186/s12885-019-5538-z.
51
Zhang C, Samanta D, Lu H, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA[J]. Proc Natl Acad Sci U S A, 2016, 113(14):E2047-56.
52
Lan Q, Liu PY, Bell JL, et al. The Emerging roles of RNA m6A methylation and demethylation as critical regulators of tumorigenesis, drug sensitivity, and resistance[J]. Cancer Res, 2021, 81(13):3431-3440.
53
Wu H, Feng J, Wu J, et al. Prognostic value of comprehensive typing based on m6A and gene cluster in TNBC[J]. J Cancer Res Clin Oncol, 2022. doi: 10.1007/s00432-022-04345-y.
54
Kim HY, Ha Thi HT, et al. IMP2 and IMP3 cooperate to promote the metastasis of triple-negative breast cancer through destabilization of progesterone receptor[J]. Cancer Lett, 2018, 415:30-39.
55
Song X, Chen B, Liang Y, et al. CircEIF3H-IGF2BP2-HuR scaffold complex promotes TNBC progression via stabilizing HSPD1/RBM8A/G3BP1 mRNA[J]. Cell Death Discov, 2022, 8(1):261.doi: 10.1038/s41420-022-01055-9.
56
Sui L, Sanders A, Jiang WG, et al. Deregulated molecules and pathways in the predisposition and dissemination of breast cancer cells to bone[J]. Comput Struct Biotechnol J, 2022, 20:2745-2758.
57
Chang G, Shi L, Ye Y, et al. YTHDF3 induces the translation of m6A-enriched gene transcripts to promote breast cancer brain metastasis[J]. Cancer Cell, 2020, 38(6):857-871.e7.
58
Lin Y, Jin X, Nie Q, et al. YTHDF3 facilitates triple-negative breast cancer progression and metastasis by stabilizing ZEB1 mRNA in an m6A-dependent manner[J]. Ann Transl Med, 2022, 10(2):83.doi: 10.21037/atm-21-6857.
59
Tan B, Zhou K, Liu W, et al. RNA N6 -methyladenosine reader YTHDC1 is essential for TGF-beta-mediated metastasis of triple negative breast cancer[J]. Theranostics, 2022, 12(13):5727-5743.
60
Dieci MV, Miglietta F, Griguolo G, et al. Biomarkers for HER2-positive metastatic breast cancer: Beyond hormone receptors[J]. Cancer Treat Rev, 2020, 88:102064.doi: 10.1016/j.ctrv.2020.102064.
61
Chen H, Yu Y, Yang M, et al. YTHDF1 promotes breast cancer progression by facilitating FOXM1 translation in an m6A-dependent manner[J]. Cell Biosci, 2022, 12(1):19.doi: 10.1186/s13578-022-00759-w.
62
Yao X, Li W, Li L, et al. YTHDF1 upregulation mediates hypoxia-dependent breast cancer growth and metastasis through regulating PKM2 to affect glycolysis[J]. Cell Death Dis, 2022, 13(3):258.doi: 10.1038/s41419-022-04711-1.
63
Huang H, Weng H, Chen J. m6A modification in coding and non-coding RNAs: Roles and therapeutic implications in cancer[J]. Cancer Cell, 2020, 37(3):270-288.
64
Lv W, Wang Y, Zhao C, et al. Identification and Validation of m6A-related lncRNA signature as potential predictive biomarkers in breast cancer[J]. Front Oncol, 2021, 11:745719.doi: 10.3389/fonc.2021.745719.
65
Shi W, Tang Y, Lu J, et al. MIR210HG promotes breast cancer progression by IGF2BP1 mediated m6A modification[J]. Cell Biosci, 2022, 12(1):38. doi: 10.1186/s13578-022-00772-z.
66
Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease[J]. Hum Genet, 2016, 135(8):851-867.
67
Liu N, Dai Q, Zheng G, et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015, 518(7540):560-564.
68
Zhou KI, Shi H, Lyu R, et al. Regulation of co-transcriptional pre-mRNA splicing by m6A through the low-complexity protein hnRNPG[J]. Mol Cell, 2019, 76(1):70-81.e9.
69
Alarcón CR, Goodarzi H, Lee H, et al. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events[J]. Cell, 2015, 162(6):1299-1308.
70
Hwang SJ, Seol HJ, Park YM, et al. MicroRNA-146a suppresses metastatic activity in brain metastasis[J]. Mol Cells, 2012, 34(3):329-334.
71
Wang S, Zou X, Chen Y, et al. Effect of N6-methyladenosine regulators on progression and prognosis of triple-negative breast cancer[J]. Front Genet, 2021, 11:580036.doi: 10.3389/fgene.2020.580036.
72
Lv W, Tan Y, Xiong M, et al. Analysis and validation of m6A regulatory network: a novel circBACH2/has-miR-944/HNRNPC axis in breast cancer progression[J]. J Transl Med, 2021, 19(1):527. doi: 10.1186/s12967-021-03196-4.
73
Moran-Jones K, Grindlay J, Jones M, et al. hnRNP A2 regulates alternative mRNA splicing of TP53INP2 to control invasive cell migration[J]. Cancer Res, 2009, 69(24):9219-9227.
74
Zhu S, Hou J, Gao H, et al. SUMOylation of HNRNPA2B1 modulates RPA dynamics during unperturbed replication and genotoxic stress responses[J]. Mol Cell, 2023, 83(4):539-555.e7.
75
Stockley J, Villasevil ME, Nixon C, et al. The RNA-binding protein hnRNPA2 regulates β-catenin protein expression and is overexpressed in prostate cancer[J]. RNA Biol, 2014, 11(6):755-765.
76
Liu Y, Li H, Liu F, et al. Heterogeneous nuclear ribonucleoprotein A2/B1 is a negative regulator of human breast cancer metastasis by maintaining the balance of multiple genes and pathways[J]. EBio Medicine, 2020, 51:102583. doi: 10.1016/j.ebiom.2019.11.044.
77
Yang B, Wang JQ, Tan Y, et al. RNA methylation and cancer treatment[J]. Pharmacol Res, 2021, 174:105937.doi: 10.1016/j.phrs.2021.105937.
78
Chen B, Ye F, Yu L, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor[J]. J Am Chem Soc, 2012, 134(43):17963-17971.
79
Huang Y, Yan J, Li Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5[J]. Nucleic Acids Res, 2015, 43(1):373-384.
80
Selberg S, Seli N, Kankuri E, et al. Rational design of novel anticancer small-molecule RNA m6A demethylase ALKBH5 inhibitors[J]. ACS Omega, 2021, 6(20):13310-13320.
81
Qu J, Yan H, Hou Y, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential[J]. J Hematol Oncol, 2022, 15(1):8.doi: 10.1186/s13045-022-01224-4.
82
Moshitch-Moshkovitz S, Dominissini D, Rechavi G. The epitranscriptome toolbox[J]. Cell, 2022, 185(5):764-776.
[1] 邵华, 那子悦, 荆慧, 李博, 王秋程, 程文. 术前经皮超声造影对乳腺癌腋窝前哨淋巴结转移及负荷的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 849-853.
[2] 张旭, 徐建平, 苏冬明, 王彩芬, 王大力, 张文智. 男性乳腺肿块的超声造影特征[J]. 中华医学超声杂志(电子版), 2023, 20(08): 854-859.
[3] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[4] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[5] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[6] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[7] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[8] 王晓燕, 肖佑, 肖戈, 王真权. 老年结直肠癌肺转移CT特征及高危因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 506-509.
[9] 于恒, 陆晓峰, 宋鹏, 毛永欢, 孙锋, 艾世超, 王峰, 陶亮, 胡琼源, 王萌, 刘颂, 王琼, 沈晓菲, 管文贤. 胃癌肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 375-379.
[10] 康海, 谭武宾, 周松, 毛正, 米泽振, 李铁求. 膀胱癌根治术后阴茎转移一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 523-525.
[11] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[12] 王迪, 吕少诚, 黄金灿, 潘飞, 姜涛, 郎韧. 肺腺癌胰腺转移伴门静脉侵犯一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 457-460.
[13] 李兆, 张颖, 宋彦呈, 李兆鹏, 刘曙光, 郭栋, 陈栋, 李宇. 构建预测结直肠癌肝转移术后患者生存的列线图模型[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 311-318.
[14] 刘飞, 王影新, 马骍, 辛灵, 程元甲, 刘倩, 王悦, 张军军. 不同介质腔内心电图定位技术在乳腺癌上臂输液港植入术中应用的随机对照研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 760-764.
[15] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
阅读次数
全文


摘要