1 |
Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010[J]. Lancet, 2012, 380(9859):2095-2128.
|
2 |
Turk-Adawi K, Sarrafzadegan N, Fadhil I, et al. Cardiovascular disease in the Eastern Mediterranean region: epidemiology and risk factor burden[J]. Nat Rev Cardiol, 2018, 15(2):106-119.
|
3 |
胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3):209-220.
|
4 |
Khera AV, Emdin CA, Drake I, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease[J]. N Engl J Med, 2016, 375(24):2349-2358.
|
5 |
Nikpay M, Goel A, Won HH, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease[J]. Nat Genet, 2015, 47(10):1121-1130.
|
6 |
Nelson CP, Goel A, Butterworth AS, et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease[J]. Nat Genet, 2017, 49(9):1385-1391.
|
7 |
Beineke P, Fitch K, Tao H, et al. A whole blood gene expression-based signature for smoking status[J]. BMC Med Genomics, 2012, 5:58.
|
8 |
Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation[J]. Nat Rev Genet, 2017, 18(6):331-344.
|
9 |
Lebedev AV, Westman E, Van Westen GJ, et al. Random forest ensembles for detection and prediction of Alzheimer's disease with a good between-cohort robustness[J]. Neuroimage Clin, 2014, 6:115-125.
|
10 |
Toth R, Schiffmann H, Hube-Magg C, et al. Random forest-based modelling to detect biomarkers for prostate cancer progression[J]. Clin Epigenetics, 2019, 11(1):148.
|
11 |
Kong Y, Yu T. A Deep Neural Network model using random forest to extract feature representation for gene expression data classification[J]. Sci Rep, 2018, 8(1):16477.
|
12 |
Sinnaeve PR, Donahue MP, Grass P, et al. Gene expression patterns in peripheral blood correlate with the extent of coronary artery disease[J]. PLoS One, 2009, 4(9):e7037.
|
13 |
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods[J]. Biostatistics, 2007, 8(1):118-127.
|
14 |
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7):e47.
|
15 |
Yu G, Wang LG, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5):284-287.
|
16 |
Maouche S, Schunkert H. Strategies beyond genome-wide association studies for atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2012, 32(2):170-181.
|
17 |
Gasser T C. Biomechanical rupture risk assessment: a consistent and objective decision-making tool for abdominal aortic aneurysm patients[J]. Aorta (Stamford), 2016, 4(2):42-60.
|
18 |
Douguet D, Patel A, Xu A, et al. Piezo ion channels in cardiovascular mechanobiology[J]. Trends Pharmacol Sci, 2019, 40(12):956-970.
|
19 |
Zhao C, Ikeda S, Arai T, et al. Association of the RYR3 gene polymorphisms with atherosclerosis in elderly Japanese population[J]. BMC Cardiovasc Disord, 2014, 14:6.
|
20 |
Da SI, Barroso M, Moura T, et al. Endothelial aquaporins and hypomethylation: potential implications for atherosclerosis and cardiovascular disease[J]. Int J Mol Sci, 2018, 19(1):130.
|
21 |
Wang Y, Liu Z, Li C, et al. Drug target prediction based on the herbs components: the study on the multitargets pharmacological mechanism of qishenkeli acting on the coronary heart disease[J]. Evid Based Complement Alternat Med, 2012, 2012:698531.
|
22 |
Zhou T, Li S, Yang L, et al. microRNA-363-3p reduces endothelial cell inflammatory responses in coronary heart disease via inactivation of the NOX4-dependent p38 MAPK axis[J]. Aging (Albany NY), 2021, 13(8):11061-11082.
|
23 |
van Venrooij NA, Pereira RC, Tintut Y, et al. FGF23 protein expression in coronary arteries is associated with impaired kidney function[J]. Nephrol Dial Transplant, 2014, 29(8):1525-1532.
|
24 |
Iakoubova OA, Tong CH, Rowland CM, et al. Association of the Trp719Arg polymorphism in kinesin-like protein 6 with myocardial infarction and coronary heart disease in 2 prospective trials: the CARE and WOSCOPS trials[J]. J Am Coll Cardiol, 2008, 51(4):435-443.
|
25 |
Shimabukuro M. Serotonin and atheroscelotic cardiovascular disease[J]. J Atheroscler Thromb, 2022, 29(3):315-316.
|
26 |
Al-Massadi O, Quiñones M, Clasadonte J, et al. MCH regulates SIRT1/FoxO1 and reduces POMC neuronal activity to induce hyperphagia, adiposity, and glucose intolerance[J]. Diabetes, 2019, 68(12):2210-2222.
|
27 |
Climent B, Santiago E, Sánchez A, et al. Metabolic syndrome inhibits store-operated Ca2 + entry and calcium-induced calcium-release mechanism in coronary artery smooth muscle[J]. Biochem Pharmacol, 2020, 182:114222.doi: 10.1016/j.bcp.2020.114222.
|
28 |
Müller II, Müller K AL, Karathanos A, et al. Impact of counterbalance between macrophage migration inhibitory factor and its inhibitor Gremlin-1 in patients with coronary artery disease[J]. Atherosclerosis, 2014, 237(2):426-432.
|
29 |
Schwertani A, Choi HY, Genest J. HDLs and the pathogenesis of atherosclerosis[J]. Curr Opin Cardiol, 2018, 33(3):311-316.
|
30 |
Cheng JM, Akkerhuis KM, Meilhac O, et al. Circulating osteoglycin and NGAL/MMP9 complex concentrations predict 1-year major adverse cardiovascular events after coronary angiography[J]. Arterioscler Thromb Vasc Biol, 2014, 34(5):1078-1084.
|
31 |
Kim WJ, Bae EM, Kang YJ, et al. Glucocorticoid‐induced tumour necrosis factor receptor family related protein (GITR) mediates inflammatory activation of macrophages that can destabilize atherosclerotic plaques[J]. Immunology, 2006, 119(3):421-429.
|
32 |
Surendran P, Drenos F, Young R, et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension[J]. Nature Genetics, 2016, 48(10):1151-1161.
|
33 |
Mishiro T, Ishihara K, Hino S, et al. Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster[J]. EMBO J, 2009, 28(9):1234-1245.
|
34 |
Chiu TF, Li CH, Chen CC, et al. Association of plasma concentration of small heat shock protein B7 with acute coronary syndrome[J]. Circ J, 2012, 76(9):2226-2233.
|
35 |
Du S, Jia Z, Zhong J, et al. TRPC5 in cardiovascular diseases[J]. Rev Cardiovasc Med, 2021, 22(1):127-135.
|
36 |
Birjmohun RS, Dallinga-Thie GM, Kuivenhoven JA, et al. Apolipoprotein A-II is inversely associated with risk of future coronary artery disease[J]. Circulation, 2007, 116(18):2029-2035.
|
37 |
Dehlin HM, Manteufel EJ, Monroe AL, et al. Substance P acting via the neurokinin-1 receptor regulates adverse myocardial remodeling in a rat model of hypertension[J]. Int J Cardiol, 2013, 168(5):4643-4651.
|
38 |
Izquierdo MC, Martin-Cleary C, Fernandez-Fernandez B, et al. CXCL16 in kidney and cardiovascular injury[J]. Cytokine Growth Factor Rev, 2014, 25(3):317-325.
|
39 |
Hitzel J, Lee E, Zhang Y, et al. Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells[J]. Nat Commun, 2018, 9(1):2292.
|
40 |
Yamada K, Watanabe A, Iwayama-Shigeno Y, et al. Evidence of association between gamma-aminobutyric acid type A receptor genes located on 5q34 and female patients with mood disorders[J]. Neurosci Lett, 2003, 349(1):9-12.
|
41 |
Li Y, Feng X, Ren H, et al. Low-dose ozone therapy improves sleep quality in patients with insomnia and coronary heart disease by elevating serum BDNF and GABA[J]. Bull Exp Biol Med, 2021, 170(4):493-498.
|
42 |
Henssen AG, Henaff E, Jiang E, et al. Genomic DNA transposition induced by human PGBD5[J]. Elife, 2015, 4:e10565.
|
43 |
Wu X, Gao H, Ke W, et al. VentX trans-activates p53 and p16ink4a to regulate cellular senescence[J]. J Biol Chem, 2011, 286(14):12693-12701.
|
44 |
Zhang D, Guan L, Li X. Bioinformatics analysis identifies potential diagnostic signatures for coronary artery disease[J]. J Int Med Res, 2020, 48(12):300060520979856.
|