切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (06) : 360 -363. doi: 10.3877/cma.j.issn.2095-1221.2017.06.009

所属专题: 文献

综述

自噬对间充质干细胞的生物学作用研究进展
王泽宇1, 张亮2, 陈涛2, 黄泽楠2, 冯新民2,()   
  1. 1. 225001 扬州大学医学院;225001 扬州,江苏省苏北人民医院脊柱外科
    2. 225001 扬州,江苏省苏北人民医院脊柱外科
  • 收稿日期:2017-07-04 出版日期:2017-12-01
  • 通信作者: 冯新民
  • 基金资助:
    国家自然科学基金青年基金(81401830); 中国博士后科学基金(2015M571714); 江苏省自然科学基金青年基金(BK20140496)

Research progress of autophagy in mesenchymal stem cells

Zeyu Wang1, Liang Zhang2, Tao Chen2, Zenan Huang2, Xinmin Feng2,()   

  1. 1. Clinical Medical College of Yangzhou University, Yangzhou 225001, China; Department of Orthopaedics, Northern Jiangsu People's Hospital, Yangzhou 225001, China
    2. Department of Orthopaedics, Northern Jiangsu People's Hospital, Yangzhou 225001, China
  • Received:2017-07-04 Published:2017-12-01
  • Corresponding author: Xinmin Feng
  • About author:
    Corresponding author:Feng Xinmin, Email:
引用本文:

王泽宇, 张亮, 陈涛, 黄泽楠, 冯新民. 自噬对间充质干细胞的生物学作用研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2017, 07(06): 360-363.

Zeyu Wang, Liang Zhang, Tao Chen, Zenan Huang, Xinmin Feng. Research progress of autophagy in mesenchymal stem cells[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(06): 360-363.

自噬是细胞器或蛋白质受损、变性、衰老时,通过溶酶体途径运输到溶酶体区进行降解、循环与再利用的生物学过程。作为主要的细胞内降解和循环途径,自噬在正常细胞和组织发育过程中对于维持和重塑细胞稳态至关重要。间充质干细胞(MSCs)是一种具有自我更新能力的多能祖细胞,并可以分化成新的组织,因而在再生医学中具有一定的应用潜能,且在多种退行性疾病的生物学治疗中显示出重要效果。自噬可以影响MSCs的干性维持及干细胞的分化。本文就自噬对MSCs的生物学作用研究进展进行综述。

Autophagy is a life-sustaining process used by the cell to deliver cytoplasmic components to the lysosome for degradation and recycle. As a major intracellular degradation and circulation pathway, autophagy is essential for maintaining and remodeling cell homeostasis during normal development of cell and tissue. Mesenchymal stem cells (MSCs) are pluripotent progenitor cells with self-renewal capabilities which play an important role in the treatment of degenerative disease. Recent studies have demonstrated that autophagy is necessary for the maintenance of cellular stemness and for a number of differentiation processes, including the lineage determination of MSCs. Here, we review the current literature on the complex relation between autophagy induced by various extra- or intracellular stimuli and the molecular targets that affect MSCs proliferation and differentiation.

1
肖漓,白剑,陈文, 等. 脐带间充质干细胞外泌体的分离和鉴定[J/CD]. 中华细胞与干细胞杂志(电子版), 2016, 6(4):236-239.
2
马锡慧,肖漓,冯凯, 等. 人脐带和骨髓间充质干细胞体外分离培养及生物学特性比较[J/CD]. 中华细胞与干细胞杂志(电子版), 2015, 5(2):10-13.
3
Wang S, Xia P, Rehm M, et al. Autophagy and cell reprogramming[J]. Cell Mol Life Sci, 2015, 72(9):1699-1713.
4
孙英焕,吴茜,李春莳, 等. 巨自噬及分子伴侣介导自噬在类风湿关节炎中的相互作用及其联系[J]. 中国免疫学杂志, 2016, 32(10):1566-1569.
5
Lapaquette P, Guzzo J, Bretillon L, et al. Cellular and molecular connections between autophagy and inflammation[J]. Mediators Inflamm, 2015, 2015:398483.
6
Klionsky DJ, Schulman BA. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins[J]. Nat Struct Mol Biol, 2014, 21(4):336-345.
7
Lee YK, Lee JA. Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy[J]. BMB Rep, 2016, 49(8):424-430.
8
Oliver L, Hue E, Rossignol J, et al. Distinct roles of Bcl-2 and Bcl-Xl in the apoptosis of human bone marrow mesenchymal stem cells during differentiation[J]. PLoS One, 2011, 6(5):e19820.
9
Molaei S, Roudkenar MH, Amiri F, et al. Down-regulation of the autophagy gene, ATG7, protects bone marrow-derived mesenchymal stem cells from stressful conditions[J]. Blood Res, 2015, 50(2):80-86.
10
Zhao K, Hao H, Liu J, et al. Bone marrow-derived mesenchymal stem cells ameliorate chronic high glucose-induced β-cell injury through modulation of autophagy[J]. Cell Death Dis, 2015, 6(9):e1885.
11
Han YF, Sun TJ, Han YQ, et al. Clinical perspectives on mesenchymal stem cells promoting wound healing in diabetes mellitus patients by inducing autophagy[J]. Eur Rev Med Pharmacol Sci, 2015, 19(14):2666-2670.
12
Chang TC, Hsu MF, Wu KK. High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy[J]. PLoS One, 2015, 10(5):e0126537.
13
马洋,刘文佳,戚朦, 等. 自然衰老小鼠骨髓间充质干细胞增龄性改变的研究[J]. 牙体牙髓牙周病学杂志, 2014, 24(4):187-191.
14
Capasso S, Alessio N, Squillaro T, et al. Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells[J]. Oncotarget, 2015, 6(37):39457-39468.
15
Madeo F, Zimmermann A, Maiuri MC, et al. Essential role for autophagy in Life span extension[J]. J Clin Invest, 2015, 125(1):85-93.
16
Radogna F, Dicato M, Diederich M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target[J]. Biochem Pharmacol, 2015, 94(1):1-11.
17
Zheng Y, Lei Y, Hu C, et al. p53 regulates autophagic activity in senescent rat mesenchymal stromal cells[J]. Exp Gerontol, 2016, 75: 64-71.
18
Angelova PR, Abramov AY. Functional role of mitochondrial reactive Oxygen species in physiology[J]. Free Radic Biol Med, 2016, 100: 81-85.
19
Ghanta S, Tsoyi K, Liu X, et al. Mesenchymal stromal cells deficient in autophagy proteins are susceptible to oxidative injury and mitochondrial dysfunction[J]. Am J Respir Cell Mol Biol, 2017, 56(3): 300-309.
20
Chen H, Ge HA, Wu GB, et al. Autophagy prevents oxidative Stress-Induced loss of Self-Renewal capacity and stemness in human tendon stem cells by reducing ROS accumulation[J]. Cell Physiol Biochem, 2016, 39(6):2227-2238.
21
陈哲,刘洁,张斌. 自噬与骨髓间充质干细胞放射损伤的关系[J]. 中国组织工程研究, 2014, 18(28):4474-4478.
22
Robey PG, Kuznetsov SA, Riminucci M, et al. Bone marrow stromal cell assays: in vitro and in vivo[J]. Methods Mol Biol, 2014, 1130: 279-293.
23
Ratcliffe P, Koivunen P, Myllyharju J, et al. Update on hypoxia-inducible factors and hydroxylases in Oxygen regulatory pathways: from physiology to therapeutics[J]. Hypoxia (Auckland, N.Z.), 2017, 5(5):11-20.
24
Zhang Z, Yang M, Wang Y, et al. Autophagy regulates the apoptosis of bone marrow-derived mesenchymal stem cells under hypoxic condition via AMP-activated protein kinase/mammalian target of rapamycin pathway[J]. Cell Biol Int, 2016, 40(6):671-685.
25
Li N, Zhang Q, Qian H, et al. Atorvastatin induces autophagy of mesenchymal stem cells under hypoxia and serum deprivation conditions by activating the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway[J]. Chin Med J (Engl), 2014, 127(6):1046-1051.
26
Zhang Q, Yang YJ, Wang H, et al. Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-Activated protein kinase/mammalian target of rapamycin pathway[J]. Stem Cells Dev, 2012, 21(8):1321-1332.
27
Li L, Li L, Zhang Z, et al. Hypoxia promotes bone marrow-derived mesenchymal stem cell proliferation through apelin/APJ/autophagy pathway[J]. Acta Biochim Biophys Sin (Shanghai), 2015, 47(5):362-367.
28
Dong W, Zhang P, Fu Y, et al. Roles of SATB2 in site-specific stemness, autophagy and senescence of bone marrow mesenchymal stem cells[J]. J Cell Physiol, 2015, 230(3):680-690.
29
Han L, Liu M, Ye D, et al. Tumor cell membrane-targeting pH-dependent electron donor-acceptor fluorescence systems with low background signals[J]. Biomaterials, 2014, 35(9):2952-2960.
30
Pellegrini P, Dyczynski M, Sbrana FV, et al. Tumor acidosis enhances cytotoxic effects and autophagy inhibition by salinomycin on cancer cell lines and cancer stem cells[J]. Oncotarget, 2016, 7(24):35703-35723.
31
Eom YW, Oh JE, Lee JI, et al. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2014, 445(1):16-22.
32
Sbrana FV, Cortini M, Avnet S, et al. The role of autophagy in the maintenance of stemness and differentiation of mesenchymal stem cells[J]. Stem Cell Rev, 2016, 12(6):621-633.
33
Ejaz A, Mitterberger MC, Lu Z, et al. Weight loss upregulates the small GTPase DIRAS3 in human white adipose progenitor cells, which negatively regulates adipogenesis and activates autophagy via Akt-mTOR inhibition[J]. EBioMedicine, 2016, 6:149-161.
34
Nuschke A, Rodrigues M, Stolz DB, et al. Human mesenchymal stem cells/multipotent stromal cells consume accumulated autophagosomes early in differentiation[J]. Stem Cell Res Ther, 2014, 5(6):140.
35
陈海璇. 干细胞因子SCF通过抑制AKT/mTOR信号通路促进脂肪干细胞的成骨分化[D]. 广州: 暨南大学, 2016.
36
Lee KW, Yook JY, Son MY, et al. Rapamycin promotes the osteoblastic differentiation of human embryonic stem cells by blocking the mTOR pathway and stimulating the BMP/Smad pathway[J]. Stem Cells Dev, 2010, 19(4):557-568.
37
王昕,马凤霞,卢士红, 等. 雷帕霉素对再生障碍性贫血患者骨髓间充质干细胞生物学功能的影响[J]. 中国实验血液学杂志, 2014, 22(3):762-766.
38
安莹. 自噬调控人颌骨骨髓间充质干细胞旁分泌功能的机制研究[D]. 西安: 第四军医大学, 2016 .
39
Ni X, Ou C, Guo J, et al. Lentiviral vector-mediated co-overexpression of VEGF and Bcl-2 improves mesenchymal stem cell survival and enhances paracrine effects in vitro[J]. Int J Mol Med, 2017, 40(2):418-426.
40
陈全刚,陈仁金,袁红花. 细胞自噬促进脂肪干细胞向软骨细胞分化[J]. 黑龙江医药科学, 2016, 39(6):1-3, 8.
41
雷艳,赵红州,李荣春, 等. 低剂量免疫抑制剂诱导人脐带间充质干细胞自噬并促进CXCR4的分泌[J]. 中华器官移植杂志, 2017, 38(1):39-44.
[1] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[2] 李争光, 宰爽嘉, 吴火峰, 孙华, 张永博, 陈浏阳, 戴睿, 张亮. 昼夜节律相关因子在椎间盘退行性变发病机制中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 457-461.
[3] 何羽. 腔镜微创手术治疗分化型甲状腺癌的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 456-458.
[4] 司钦亮, 毕世龙, 焦慧骁, 李世照, 陈哲禹, 武玉东. 精索去分化脂肪肉瘤两例并文献复习[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 585-590.
[5] 杨攀, 黄晓寒, 邓才霞, 周利航, 周向东, 罗虎. SMARCA4缺失的胸部未分化肿瘤临床特征及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 529-534.
[6] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[7] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[8] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[9] 任江波, 李丽, 王萍. 阻断PI3K/Akt信号通路促进低表达FoxA2肝脏前体细胞对分化诱导剂应答并朝肝细胞方向分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 336-343.
[10] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[11] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[12] 张津, 李欣达, 徐如祥. 神经类器官在大脑常见疾病治疗中的应用及在脊髓损伤修复中的应用前景[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 257-263.
[13] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
[14] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[15] 杨菲, 刘腾飞, 赵志军, 李睿聪, 张颉, 刘妍, 赵珍. 血清维生素水平与分化型甲状腺癌的关联性研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 633-640.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?