切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (06) : 360 -363. doi: 10.3877/cma.j.issn.2095-1221.2017.06.009

所属专题: 文献

综述

自噬对间充质干细胞的生物学作用研究进展
王泽宇1, 张亮2, 陈涛2, 黄泽楠2, 冯新民2,()   
  1. 1. 225001 扬州大学医学院;225001 扬州,江苏省苏北人民医院脊柱外科
    2. 225001 扬州,江苏省苏北人民医院脊柱外科
  • 收稿日期:2017-07-04 出版日期:2017-12-01
  • 通信作者: 冯新民
  • 基金资助:
    国家自然科学基金青年基金(81401830); 中国博士后科学基金(2015M571714); 江苏省自然科学基金青年基金(BK20140496)

Research progress of autophagy in mesenchymal stem cells

Zeyu Wang1, Liang Zhang2, Tao Chen2, Zenan Huang2, Xinmin Feng2,()   

  1. 1. Clinical Medical College of Yangzhou University, Yangzhou 225001, China; Department of Orthopaedics, Northern Jiangsu People's Hospital, Yangzhou 225001, China
    2. Department of Orthopaedics, Northern Jiangsu People's Hospital, Yangzhou 225001, China
  • Received:2017-07-04 Published:2017-12-01
  • Corresponding author: Xinmin Feng
  • About author:
    Corresponding author:Feng Xinmin, Email:
引用本文:

王泽宇, 张亮, 陈涛, 黄泽楠, 冯新民. 自噬对间充质干细胞的生物学作用研究进展[J]. 中华细胞与干细胞杂志(电子版), 2017, 07(06): 360-363.

Zeyu Wang, Liang Zhang, Tao Chen, Zenan Huang, Xinmin Feng. Research progress of autophagy in mesenchymal stem cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(06): 360-363.

自噬是细胞器或蛋白质受损、变性、衰老时,通过溶酶体途径运输到溶酶体区进行降解、循环与再利用的生物学过程。作为主要的细胞内降解和循环途径,自噬在正常细胞和组织发育过程中对于维持和重塑细胞稳态至关重要。间充质干细胞(MSCs)是一种具有自我更新能力的多能祖细胞,并可以分化成新的组织,因而在再生医学中具有一定的应用潜能,且在多种退行性疾病的生物学治疗中显示出重要效果。自噬可以影响MSCs的干性维持及干细胞的分化。本文就自噬对MSCs的生物学作用研究进展进行综述。

Autophagy is a life-sustaining process used by the cell to deliver cytoplasmic components to the lysosome for degradation and recycle. As a major intracellular degradation and circulation pathway, autophagy is essential for maintaining and remodeling cell homeostasis during normal development of cell and tissue. Mesenchymal stem cells (MSCs) are pluripotent progenitor cells with self-renewal capabilities which play an important role in the treatment of degenerative disease. Recent studies have demonstrated that autophagy is necessary for the maintenance of cellular stemness and for a number of differentiation processes, including the lineage determination of MSCs. Here, we review the current literature on the complex relation between autophagy induced by various extra- or intracellular stimuli and the molecular targets that affect MSCs proliferation and differentiation.

1
肖漓,白剑,陈文, 等. 脐带间充质干细胞外泌体的分离和鉴定[J/CD]. 中华细胞与干细胞杂志(电子版), 2016, 6(4):236-239.
2
马锡慧,肖漓,冯凯, 等. 人脐带和骨髓间充质干细胞体外分离培养及生物学特性比较[J/CD]. 中华细胞与干细胞杂志(电子版), 2015, 5(2):10-13.
3
Wang S, Xia P, Rehm M, et al. Autophagy and cell reprogramming[J]. Cell Mol Life Sci, 2015, 72(9):1699-1713.
4
孙英焕,吴茜,李春莳, 等. 巨自噬及分子伴侣介导自噬在类风湿关节炎中的相互作用及其联系[J]. 中国免疫学杂志, 2016, 32(10):1566-1569.
5
Lapaquette P, Guzzo J, Bretillon L, et al. Cellular and molecular connections between autophagy and inflammation[J]. Mediators Inflamm, 2015, 2015:398483.
6
Klionsky DJ, Schulman BA. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins[J]. Nat Struct Mol Biol, 2014, 21(4):336-345.
7
Lee YK, Lee JA. Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy[J]. BMB Rep, 2016, 49(8):424-430.
8
Oliver L, Hue E, Rossignol J, et al. Distinct roles of Bcl-2 and Bcl-Xl in the apoptosis of human bone marrow mesenchymal stem cells during differentiation[J]. PLoS One, 2011, 6(5):e19820.
9
Molaei S, Roudkenar MH, Amiri F, et al. Down-regulation of the autophagy gene, ATG7, protects bone marrow-derived mesenchymal stem cells from stressful conditions[J]. Blood Res, 2015, 50(2):80-86.
10
Zhao K, Hao H, Liu J, et al. Bone marrow-derived mesenchymal stem cells ameliorate chronic high glucose-induced β-cell injury through modulation of autophagy[J]. Cell Death Dis, 2015, 6(9):e1885.
11
Han YF, Sun TJ, Han YQ, et al. Clinical perspectives on mesenchymal stem cells promoting wound healing in diabetes mellitus patients by inducing autophagy[J]. Eur Rev Med Pharmacol Sci, 2015, 19(14):2666-2670.
12
Chang TC, Hsu MF, Wu KK. High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy[J]. PLoS One, 2015, 10(5):e0126537.
13
马洋,刘文佳,戚朦, 等. 自然衰老小鼠骨髓间充质干细胞增龄性改变的研究[J]. 牙体牙髓牙周病学杂志, 2014, 24(4):187-191.
14
Capasso S, Alessio N, Squillaro T, et al. Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells[J]. Oncotarget, 2015, 6(37):39457-39468.
15
Madeo F, Zimmermann A, Maiuri MC, et al. Essential role for autophagy in Life span extension[J]. J Clin Invest, 2015, 125(1):85-93.
16
Radogna F, Dicato M, Diederich M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target[J]. Biochem Pharmacol, 2015, 94(1):1-11.
17
Zheng Y, Lei Y, Hu C, et al. p53 regulates autophagic activity in senescent rat mesenchymal stromal cells[J]. Exp Gerontol, 2016, 75: 64-71.
18
Angelova PR, Abramov AY. Functional role of mitochondrial reactive Oxygen species in physiology[J]. Free Radic Biol Med, 2016, 100: 81-85.
19
Ghanta S, Tsoyi K, Liu X, et al. Mesenchymal stromal cells deficient in autophagy proteins are susceptible to oxidative injury and mitochondrial dysfunction[J]. Am J Respir Cell Mol Biol, 2017, 56(3): 300-309.
20
Chen H, Ge HA, Wu GB, et al. Autophagy prevents oxidative Stress-Induced loss of Self-Renewal capacity and stemness in human tendon stem cells by reducing ROS accumulation[J]. Cell Physiol Biochem, 2016, 39(6):2227-2238.
21
陈哲,刘洁,张斌. 自噬与骨髓间充质干细胞放射损伤的关系[J]. 中国组织工程研究, 2014, 18(28):4474-4478.
22
Robey PG, Kuznetsov SA, Riminucci M, et al. Bone marrow stromal cell assays: in vitro and in vivo[J]. Methods Mol Biol, 2014, 1130: 279-293.
23
Ratcliffe P, Koivunen P, Myllyharju J, et al. Update on hypoxia-inducible factors and hydroxylases in Oxygen regulatory pathways: from physiology to therapeutics[J]. Hypoxia (Auckland, N.Z.), 2017, 5(5):11-20.
24
Zhang Z, Yang M, Wang Y, et al. Autophagy regulates the apoptosis of bone marrow-derived mesenchymal stem cells under hypoxic condition via AMP-activated protein kinase/mammalian target of rapamycin pathway[J]. Cell Biol Int, 2016, 40(6):671-685.
25
Li N, Zhang Q, Qian H, et al. Atorvastatin induces autophagy of mesenchymal stem cells under hypoxia and serum deprivation conditions by activating the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway[J]. Chin Med J (Engl), 2014, 127(6):1046-1051.
26
Zhang Q, Yang YJ, Wang H, et al. Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-Activated protein kinase/mammalian target of rapamycin pathway[J]. Stem Cells Dev, 2012, 21(8):1321-1332.
27
Li L, Li L, Zhang Z, et al. Hypoxia promotes bone marrow-derived mesenchymal stem cell proliferation through apelin/APJ/autophagy pathway[J]. Acta Biochim Biophys Sin (Shanghai), 2015, 47(5):362-367.
28
Dong W, Zhang P, Fu Y, et al. Roles of SATB2 in site-specific stemness, autophagy and senescence of bone marrow mesenchymal stem cells[J]. J Cell Physiol, 2015, 230(3):680-690.
29
Han L, Liu M, Ye D, et al. Tumor cell membrane-targeting pH-dependent electron donor-acceptor fluorescence systems with low background signals[J]. Biomaterials, 2014, 35(9):2952-2960.
30
Pellegrini P, Dyczynski M, Sbrana FV, et al. Tumor acidosis enhances cytotoxic effects and autophagy inhibition by salinomycin on cancer cell lines and cancer stem cells[J]. Oncotarget, 2016, 7(24):35703-35723.
31
Eom YW, Oh JE, Lee JI, et al. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2014, 445(1):16-22.
32
Sbrana FV, Cortini M, Avnet S, et al. The role of autophagy in the maintenance of stemness and differentiation of mesenchymal stem cells[J]. Stem Cell Rev, 2016, 12(6):621-633.
33
Ejaz A, Mitterberger MC, Lu Z, et al. Weight loss upregulates the small GTPase DIRAS3 in human white adipose progenitor cells, which negatively regulates adipogenesis and activates autophagy via Akt-mTOR inhibition[J]. EBioMedicine, 2016, 6:149-161.
34
Nuschke A, Rodrigues M, Stolz DB, et al. Human mesenchymal stem cells/multipotent stromal cells consume accumulated autophagosomes early in differentiation[J]. Stem Cell Res Ther, 2014, 5(6):140.
35
陈海璇. 干细胞因子SCF通过抑制AKT/mTOR信号通路促进脂肪干细胞的成骨分化[D]. 广州: 暨南大学, 2016.
36
Lee KW, Yook JY, Son MY, et al. Rapamycin promotes the osteoblastic differentiation of human embryonic stem cells by blocking the mTOR pathway and stimulating the BMP/Smad pathway[J]. Stem Cells Dev, 2010, 19(4):557-568.
37
王昕,马凤霞,卢士红, 等. 雷帕霉素对再生障碍性贫血患者骨髓间充质干细胞生物学功能的影响[J]. 中国实验血液学杂志, 2014, 22(3):762-766.
38
安莹. 自噬调控人颌骨骨髓间充质干细胞旁分泌功能的机制研究[D]. 西安: 第四军医大学, 2016 .
39
Ni X, Ou C, Guo J, et al. Lentiviral vector-mediated co-overexpression of VEGF and Bcl-2 improves mesenchymal stem cell survival and enhances paracrine effects in vitro[J]. Int J Mol Med, 2017, 40(2):418-426.
40
陈全刚,陈仁金,袁红花. 细胞自噬促进脂肪干细胞向软骨细胞分化[J]. 黑龙江医药科学, 2016, 39(6):1-3, 8.
41
雷艳,赵红州,李荣春, 等. 低剂量免疫抑制剂诱导人脐带间充质干细胞自噬并促进CXCR4的分泌[J]. 中华器官移植杂志, 2017, 38(1):39-44.
[1] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[4] 黄汇, 朱信强. 131I治疗45岁以下分化型甲状腺癌的疗效及影响因素[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 627-630.
[5] 郑泽坤, 刘卓恒, 邹浩, 胡会元, 李妲, 吴巍. 扩大根治性手术切除复发性巨大腹膜后去分化脂肪肉瘤1例[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 588-590.
[6] 张蓉, 秦洪真, 杨晓冬, 刘爽, 刘明锋, 曹秀堂. 分化型甲状腺癌术后康复锻炼的临床应用研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 439-442.
[7] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[8] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[9] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[10] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[11] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[12] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[13] 吴凤芸, 滕鑫, 刘连娟. 高帧频超声造影与增强磁共振对不同直径原发性高分化肝细胞癌的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 404-408.
[14] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要