切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (03) : 188 -192. doi: 10.3877/cma.j.issn.2095-1221.2019.03.010

所属专题: 文献

综述

多能性胚胎干细胞与DNA甲基化的关系
汪若凤1,(), 郭永洪1, 田勤1, 段维鸽1   
  1. 1. 650000 昆明,云南工商学院护理学院
  • 收稿日期:2019-04-29 出版日期:2019-06-01
  • 通信作者: 汪若凤
  • 基金资助:
    云南省教育厅科研基金(2019J0986)

Correlation of pluripotency of embryonic stem cells with DNA methylation

Ruofeng Wang1,(), Yonghong Guo1, Qin Tian1, Weige Duan1   

  1. 1. School of Nursing, Yunnan Technology and Business University, Kunming 650000, China
  • Received:2019-04-29 Published:2019-06-01
  • Corresponding author: Ruofeng Wang
  • About author:
    Corresponding author: Wang Ruofeng, Email:
引用本文:

汪若凤, 郭永洪, 田勤, 段维鸽. 多能性胚胎干细胞与DNA甲基化的关系[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(03): 188-192.

Ruofeng Wang, Yonghong Guo, Qin Tian, Weige Duan. Correlation of pluripotency of embryonic stem cells with DNA methylation[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(03): 188-192.

胚胎干细胞是一种能够维持自我更新、具有无限扩增能力的多能性干细胞。灵长类多能干细胞(iPSCs)根据其发育能力、细胞形态、基因表达谱以及表观遗传学的差异分为初始态多能干细胞(pPSCs)和原始态多能干细胞(nPSCs)。nPSCs因其容易进行基因工程处理以及体内外再生出功能组织器官等优势而在临床潜在应用上备受关注,因而有效维持ESCs的原始状态对其用于基础及临床研究具有重要意义。nPSCs的线粒体活性和自我更新能力高于pPSCs,且这两种多能性干细胞在DNA甲基化等方面都存在明显差别,DNA甲基化在nPSCs的转化及代谢中起到重要的作用。本文综述了DNA甲基化对ESCs的作用,特别是维持原始态的作用。

Embryonic Stem cells is a kind of pluripotent stem cells which can maintain self-renewal and have unlimited expansion ability. Primate pluripotent stem cells (PSCs) are defined as naive- and primed- state according to their varieties in cellular, molecular, epigenetic and functional states. nPSCs had attracted much attention in clinical application because of its easy for genetic engineering and regeneration of functional tissues and organs in vitro or in vivo. Thus maintaining their na?ve state effectively is of great significance to basic and clinical research of stem cells. Numerous studies shows that na?ve PSCs had a higher mitochondrial activity and self-?renewal ability than Primed ESCs, and there were significant differences between these two kinds of pluripotent stem cellsin DNA methylation. This article provides the effect of DNA methylation on embryonic stem cells, particularly focusing on the maintenance of embryonic stem cell naive state.

图1 DNA甲基化酶作用模式
[1]
Liu H,F Zhu,J Yong, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts[J]. Cell Stem Cell, 2008, 3(6):587-590.
[2]
Chen Y,Y Niu,Y Li, et al. Generation of Cynomolgus Monkey Chimeric Fetuses using Embryonic Stem Cells[J]. Cell Stem Cell, 2015, 17(1):116-124.
[3]
Chédin F. The DNMT3 family of mammalian de novo DNA methyltransferases[J]. Prog Mol Biol Transl Sci, 2011, 101:255-285.
[4]
Jackson M,A Krassowska,N Gilbert, et al. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells[J]. Mol Cell Biol, 2004, 24(20):8862-8871.
[5]
Feng J,H Chang,E Li, et al. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system[J]. J Neurosci Res, 2005, 79(6):734-746.
[6]
Zhang L,C Gu,L Yang, et al. The sequence preference of DNA methylation variation in mammalians[J]. PLoS One, 2017, 12(10): e0186559.
[7]
Weber M,I Hellmann,MB Stadler, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome[J]. Nat Genet, 2007, 39(4):457-466.
[8]
Ziller MJ,F Muller,J Liao, et al. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types[J]. PLoS Genet, 2011, 7(12):e1002389.
[9]
Lea AJ,CM Vockley,RA Johnston, et al. Genome-wide quantification of the effects of DNA methylation on human gene regulation[J]. Elife, 2018, 7.
[10]
Brunner AL,DS Johnson,SW Kim, et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver[J]. Genome Res, 2009, 19(6):1044-1056.
[11]
Zawada AM,JS Schneider,AI Michel, et al. DNA methylation profiling reveals differences in the 3 human monocyte subsets and identifies uremia to induce DNA methylation changes during differentiation[J]. Epigenetics, 2016, 11(4):259-272.
[12]
Gkountela S,KX Zhang,TA Shafiq, et al. DNA Demethylation Dynamics in the Human Prenatal Germline[J]. Cell, 2015, 161(6):1425-1436.
[13]
Guo H,P Zhu,L Yan, et al. The DNA methylation landscape of human early embryos[J]. Nature, 2014, 511(7511):606-610.
[14]
Pastor WA,D Chen,W Liu, et al. Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory[J]. Cell Stem Cell, 2016, 18(3):323-329.
[15]
Liao J,R Karnik,H Gu, et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells[J]. Nat Genet, 2015, 47(5):469-478.
[16]
Tajima S,I Suetake,K Takeshita, et al. Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases[J]. Adv Exp Med Biol, 2016, 945:63-86.
[17]
Lee HJ,Hore TA,Reik W. Reprogramming the methylome:erasing memory and creating diversity[J]. Cell Stem Cell, 2014, 14(6):710-719.
[18]
Fouse SD,Y Shen,M Pellegrini, et al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation[J]. Cell Stem Cell, 2008, 2(2):160-169.
[19]
Sendzikaite G,CW Hanna,KR Stewart-Morgan, et al. A DNMT3A PWWP mutation leads to methylation of bivalent chromatin and growth retardation in mice[J]. Nat Commun, 2019, 10(1):1884.
[20]
Zhang D,X An,Z Li, et al. Role of gene promoter methylation regulated by TETs and DNMTs in the overexpression of HLA-G in MCF-7 cells[J]. Exp Ther Med, 2019, 17(6):4709-4714.
[21]
Wang K,Y Chen,EA Chang, et al. Dynamic epigenetic regulation of the Oct4 and Nanog regulatory regions during neural differentiation in rhesus nuclear transfer embryonic stem cells[J]. Cloning Stem Cells, 2009, 11(4):483-496.
[22]
Li JY,MT Pu,R Hirasawa, et al. Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog[J]. Mol Cell Biol, 2007, 27(24):8748-8759.
[23]
Tomikawa J,K Fukatsu,S Tanaka, et al. DNA methylation-dependent epigenetic regulation of dimethylarginine dimethylaminohydrolase 2 gene in trophoblast cell lineage[J]. J Biol Chem, 2006, 281(17):12163-12169.
[24]
Dan J,Chen T. Genetic studies on mammalian DNA methyltransferases [J]. Adv Exp Med Biol, 2016, 945:123-150.
[25]
Gurdon JB. From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation[J]. Annu Rev Cell Dev Biol, 2006, 22:1-22.
[26]
Takahashi K,Tanabe K,Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
[27]
Bao S,Tang F,Li X, et al. Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells[J]. Nature, 2009, 461(7268):1292-1295.
[28]
Rao J,Greber B. Conversion of epiblast stem cells to embryonic stem cells using growth factors and small molecule inhibitors[J]. Methods Mol Biol, 2014, 1150:215-226.
[29]
Nichols J,Smith A. Naive and primed pluripotent states[J]. Cell Stem Cell, 2009, 4(6):487-492.
[30]
Boroviak T,Nichols J. Primate embryogenesis predicts the hallmarks of human naive pluripotency[J]. Development, 2017, 144(2):175-186.
[31]
Lee HJ,Hore TA,Reik W. Reprogramming the methylome: erasing memory and creating diversity[J]. Cell Stem Cell, 2014, 14(6):710-719.
[32]
Ying QL,Wray J,Nichols J, et al. The ground state of embryonic stem cell self-renewal[J]. Nature, 2008, 453(7194):519-523.
[33]
Ficz G,Hore TA,Santos F, et al. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency[J]. Cell Stem Cell, 2013, 13(3):351-359.
[34]
Habibi E,Brinkman AB,Arand J, et al. Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells[J]. Cell Stem Cell, 2013, 13(3):360-369.
[35]
Leitch HG,McEwen KR,Turp A, et al. Naive pluripotency is associated with global DNA hypomethylation[J]. Nat Struct Mol Biol, 2013, 20(3):311-316.
[36]
Kiyonari H,Kaneko M,Abe S, et al. Three inhibitors of FGF receptor, ERK, and GSK3 establishes germline-competent embryonic stem cells of C57BL/6N mouse strain with high efficiency and stability[J]. Genesis, 2010, 48(5):317-327.
[37]
Li P,Tong C,Mehrian-Shai R, et al. Germline competent embryonic stem cells derived from rat blastocysts[J]. Cell, 2008, 135(7):1299-1310.
[38]
Nichols J,Jones K,Phillips JM, et al. Validated germline-competent embryonic stem cell lines from nonobese diabetic mice[J]. Nat Med, 2009, 15(7):814-818.
[39]
Mulas C,Kalkan T,von Meyenn F, et al. Defined conditions for propagation and manipulation of mouse embryonic stem cells[J]. Development, 2019, 146(6). pii: dev173146.
[40]
Chan YS,Göke J,Ng JH, et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast[J]. Cell Stem Cell, 2013, 13(6):663-675.
[41]
Takashima Y,Guo G,Loos R, et al. Resetting Transcription Factor Control Circuitry toward Ground-State Pluripotency in Human[J]. Cell, 2015, 162(2):452-453.
[42]
Theunissen TW,Powell BE,Wang H, et al. Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency[J]. Cell Stem Cell, 2014, 15(4):524-526.
[43]
Warrier S,Popovic M,Van der Jeught M, et al. Establishment and Characterization of Naive Pluripotency in Human Embryonic Stem Cells[J]. Methods Mol Biol, 2016, 1516:13-46.
[44]
Pastor WA,Chen D,Liu W, et al. Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory[J]. Cell Stem Cell, 2016, 18(3):323-329.
[45]
Inada E,Saitoh I,Kubota N, et al. Increased expression of cell surface SSEA-1 is closely associated with naive-like conversion from human deciduous teeth dental pulp cells-derived iPS cells[J]. Int J Mol Sci, 2019, 20(7). pii: E1651.
[46]
Chan AW. Progress and prospects for genetic modification of nonhuman primate models in biomedical research[J]. ILAR J, 2013, 54(2):211-223.
[47]
Gafni O,Weinberger L,Mansour AA, et al. Derivation of novel human ground state naive pluripotent stem cells[J]. Nature, 2013, 504(7479):282-286.
[48]
Fang R,Liu K,Zhao Y, et al. Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts[J]. Cell Stem Cell, 2014, 15(4):488-497.
[49]
Takashima Y,Guo G,Loos R, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human[J]. Cell, 2014, 158(6):1254-1269.
[50]
Hanna J,Cheng AW,Saha K, et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs[J]. Proc Natl Acad Sci U S A, 2010, 107(20):9222-9227.
[51]
Ware CB,Nelson AM,Mecham B, et al. Derivation of naïve human embryonic stem cells[J]. Proc Natl Acad Sci U S A, 2014, 111(12):4484-4489.
[52]
Kalkan T,Bornelöv S,Mulas C, et al. Complementary activity of ETV5, RBPJ, and TCF3 drives formative transition from naive pluripotency[J]. Cell Stem Cell, 2019, 24(5):785-801.e7.
[53]
Dakhore S,Nayer B,Hasegawa K. Human pluripotent stem cell culture: current status, challenges, and advancement[J]. Stem Cells Int, 2018, 2018:7396905.
[54]
Welling M,Geijsen N. Uncovering the true identity of naive pluripotent stem cells[J]. Trends Cell Biol, 2013, 23(9):442-448.
[55]
De Carvalho DD,You JS,Jones PA. DNA methylation and cellular reprogramming[J]. Trends Cell Biol, 2010, 20(10):609-617.
[56]
Laurent L,Wong E,Li G, et al. Dynamic changes in the human methylome during differentiation[J]. Genome Res, 2010, 20(3):320-331.
[57]
Liu L,Luo GZ,Yang W, et al. Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells[J]. J Biol Chem, 2010, 285(25):19483-19490.
[1] 符莞孟, 王晓黎, 刘玉, 张潍, 张菊. 干细胞治疗多囊卵巢综合征的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 108-114.
[2] 周逸凡, 金颖. ERK信号通路在人多能干细胞的多能性状态调控中的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 27-35.
[3] 武玉康, 康九红. 多能干细胞在心脏发育和疾病研究中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 378-382.
[4] 高原, 盛伟, 黄国英. 多能干细胞在体外心脏模型构建研究中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 314-318.
[5] 柯敏霞, 杨黄恬. 心肌微组织的构建及其在心肌损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 224-229.
[6] 胡敏洁, 王思贤, 王永煜. 人诱导多能干细胞及其在血管相关疾病模型中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 167-175.
[7] 李佳一, 张美丽, 黄粤. 1号染色体长臂扩增削弱人胚胎干细胞神经分化潜能[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 129-137.
[8] 陈妙纯, 吴高椿, 刘韬. 人诱导性多能干细胞向红系分化的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 115-120.
[9] 张小佐, 霍海芹, 谭建新, 张芳, 冯浩洋, 许争峰. 多能干细胞体外分化为类神经管模型的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 45-50.
[10] 杜为, 崔丽娟, 徐迎, 张华, 杜宏伟, 张金美, 刘容志, 王征宇, 杨文玲, 张宇. 脐带血单个核细胞诱导多能干细胞来源自然杀伤细胞的生物学特性[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 329-336.
[11] 丁丰悦, 武宏春, 黄莹, 殷为民, 雷伟. miR-148/152家族调控内皮细胞糖酵解相关基因的表达分析[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 321-328.
[12] 刘锴. 无异源培养条件下人多能干细胞系H1非病毒转染方法的比较和优化[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 305-310.
[13] 徐新丽, 于小勇. 表观遗传——中医药治疗糖尿病肾病新视角[J]. 中华肾病研究电子杂志, 2022, 11(05): 276-280.
[14] 汪东生, 吴理达, 顾雨春. 细胞基因疗法在视网膜退行性疾病中的应用和挑战[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 129-133.
[15] 孔蕊, 姚群, 张小红, 吴晓博, 范颖. DNA甲基化检测在分流阴道镜检查中的应用[J]. 中华临床医师杂志(电子版), 2022, 16(01): 28-32.
阅读次数
全文


摘要