切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (06) : 321 -328. doi: 10.3877/cma.j.issn.2095-1221.2021.06.001

论著

miR-148/152家族调控内皮细胞糖酵解相关基因的表达分析
丁丰悦1, 武宏春1, 黄莹1, 殷为民1, 雷伟1,()   
  1. 1. 215021 苏州,江苏省苏州大学医学部心血管病研究所;215006 苏州,江苏省苏州大学附属第一医院心脏大血管外科
  • 收稿日期:2021-06-23 出版日期:2021-12-01
  • 通信作者: 雷伟
  • 基金资助:
    国家自然科学基金(81970223); 江苏省自然科学基金(BK20201409)

Role of miR-148/152 family in regulating the expression of glycolysis-related genes in endothelial cells

Fengyue Ding1, Hongchun Wu1, Ying Huang1, Weimin Yin1, Wei Lei1,()   

  1. 1. Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou 215021, China; Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
  • Received:2021-06-23 Published:2021-12-01
  • Corresponding author: Wei Lei
引用本文:

丁丰悦, 武宏春, 黄莹, 殷为民, 雷伟. miR-148/152家族调控内皮细胞糖酵解相关基因的表达分析[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 321-328.

Fengyue Ding, Hongchun Wu, Ying Huang, Weimin Yin, Wei Lei. Role of miR-148/152 family in regulating the expression of glycolysis-related genes in endothelial cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(06): 321-328.

目的

探究miR-148/152家族在多能干细胞衍生内皮细胞(ECs)中对糖酵解相关基因的调控作用。

方法

本研究以人胚胎干细胞(hESCs)株H1(WT)和采用CRISPR/Cas9基因编辑技术构建的miR-148/152家族全敲除多能干细胞系(TKO)为基础;利用免疫荧光技术检测干细胞标志物NANOG的表达,评估WT和TKO干细胞的多能性;通过添加化学小分子和细胞因子如Wnt信号通路激活剂、碱性成纤维细胞生长因子、血管内皮生长因子和骨形态发生蛋白4等,定向诱导hESCs向ECs分化;采用RT-qPCR检测miR-148/152家族在ECs中的敲除效率,并探究糖酵解关键酶和代谢转换关键基因在WT和TKO干细胞分化ECs中的表达差异。两组间比较采用独立样本t检验。

结果

与WT比较,TKO多能干细胞中miR-148a(1.00±0.03比0.00±0.00)、miR-148b(1.00±0.07比0.13±0.06)、miR-152(1.01±0.15比0.05±0.03)丰度降低,差异具有统计学意义(P均< 0.001)。WT和TKO hESCs均表达核定位的多能性标志分子NANOG,且均可定向分化为CD31阳性的ECs。与WT比较,TKO ECs中miR-148a(1.00±0.05比0.00±0.00)、miR- 148b(1.00±0.08比0.12±0.05)、miR-152(1.00±0.08比0.13±0.07)检测丰度降低,差异具有统计学意义(P均< 0.001)。与WT比较,TKO ECs中糖酵解关键酶如磷酸甘油酸激酶(1.00±0.09比0.20±0.02)、己糖激酶(1.02±0.20比0.55±0.12)、磷酸果糖激酶(1.00±0.05比0.67±0.14)、乳酸脱氢酶(1.00±0.04比0.53±0.05)、丙酮酸激酶(1.00±0.03比0.83±0.09)、3-磷酸甘油醛脱氢酶(1.00±0.03比0.59±0.09)的mRNA表达水平下调,而糖代谢向氧化磷酸化代谢转换过程中的重要基因丙酮酸脱氢酶激酶1(1.00±0.08比2.90±0.23)在敲除系中表达量升高,差异有统计学意义(P均< 0.05)。与WT比较,TKO ECs中糖酵解抑制因子磷脂酶和张力蛋白同源物的表达量升高(1.01±0.11比3.83±0.81,P < 0.001)。

结论

miR-148/152家族是调控ECs糖代谢的重要因子,可能在维持ECs糖酵解平衡,抑制其向氧化磷酸化代谢转换中发挥重要作用。

Objective

To explore the role of miR-148/152 family in the regulation of glycolysis-related genes in pluripotent stem cell-derived endothelial cells (ECs) .

Methods

In this study, we used the wild-type human embryonic stem cells (hESCs) strain H1 (WT) and the miR-148/152 family knockout hESCs line (TKO) , which was generated from H1 hESCs using CRISPR/Cas9 gene editing technology. The expression of pluripotent marker NANOG was detected by immunofluorescence technology. ECs were differentiated from both WT and TKO hESCs by subsequent treatment with chemical small molecules and cytokines such as Wnt signaling pathway activator, basic fibroblast growth factor, vascular endothelial growth factor and bone morphogenetic protein 4. RT-qPCR was performed to detect the knockout efficiency of miR-148/152 in the TKO ECs, and explore the effects of miR-148/152 family on the glycolytic metabolic enzymes and the metabolic transformation-related genes. Data between the two groups were compared by t test.

Results

Compared with the WT, the TKO hESCs showed significantly decreased detection abundance of miR-148a (1.00±0.03 vs 0.00±0.00) , miR- 148b (1.00±0.07 vs 0.13±0.06) , and miR-152 (1.01±0.15 vs 0.05±0.03) , (all P < 0.001) . A comparable expression of the pluripotency marker NANOG was detected in the nuclei of WT and TKO hESCs. Both WT and TKO hESCs can differentiate into CD31-positive ECs. Compared with the WT, the ECs derived from TKO hESCs showed significantly decreased detection abundance of miR-148a (1.00±0.05 vs 0.00±0.00) , miR-148b (1.00±0.08 vs 0.12±0.05) , and miR- 152 (1.00±0.08 vs 0.13±0.07) , (all P < 0.001) . The mRNA expression levels of key glycolytic enzymes, including phosphoglycerate kinase 1 (1.00±0.09 vs 0.20±0.02) , hexokinase 2 (1.02±0.20 vs 0.55±0.12) , 6-phosphofructo-2-kinase (1.00±0.05 vs 0.67±0.14) , lactate dehydrogenase A (1.00±0.04 vs 0.53±0.05) , pyruvate kinase M (1.00±0.03 vs 0.83±0.09) , glyceraldehyde-3-phosphate dehydrogenase (1.00±0.03 vs 0.59±0.09) , were significantly reduced in TKO hESC-derived ECs, when compared to that in the WT hESC-derived ECs (P < 0.05) . Moreover, the mRNA expression of pyruvate dehydrogenase kinase 1 (1.00±0.08 vs 2.90±0.23, P < 0.001) , a key gene in the process of metabolic transformation from glucose metabolism to oxidative phosphorylation metabolism, was significantly upregulated in TKO hESC-derived ECs. Consistently, expression level of the glycolysis suppressor phosphate and tension homology in the TKO ECs increased by about 4 folds when compared to that in the WT ECs (1.01±0.11 vs 3.83±0.81, P < 0.001) .

Conclusion

The miR-148/152 family is an important factor in regulating the glucose metabolism of ECs, and may contribute to maintaining the balance of glycolysis and inhibiting the glycolysis-to-oxidative phosphorylation transition.

表1 实时荧光定量PCR引物序列
表2 miRNA特异性反转录引物序列
图1 miR-148/152家族成员序列比对注:黄色标注为成员种子序列,红色字体为相同序列;miR-148/152家族成员序列高度相似,且具有相同种子序列
图2 WT和TKO人胚胎干细胞中miR-148/152家族成员的表达分析注:WT为野生型,TKO为miR-148/152家族基因敲除;TKO人胚胎干细胞中miR-148/152家族成员的检测丰度降低;实验设3个复孔,重复3次,aP < 0.001
图3 激光共聚焦显微镜下观察干性标志物NANOG在WT和TKO干细胞中的表达分布(免疫荧光染色,×100)注:WT为对照;TKO为miR-148/152家族敲除;NANOG(绿色)为干性标志物,DAPI染细胞核;WT与TKO的NANOG均定位于细胞核中,表达无明显差异
表3 WT和TKO人胚胎干细胞中miR-148/152成员表达分析(±s
图4 人胚胎干细胞来源内皮细胞分化流程注:CHIR为Wnt信号通路激活剂CHIR99021(第0、1天);bFGF为碱性成纤维细胞生长因子(第2天);BMP4为骨形态发生蛋白4(第3、4、5天);VEGF为血管内皮生长因子(第3、4、5天)。MACS为磁珠分选
图5 激光共聚焦显微镜下观察内皮标志物CD31在WT和TKO内皮细胞中的表达分布(免疫荧光染色,×200)注:a图为野生型,b图为miR-148/152家族敲除;CD31(绿色)为内皮细胞标志物,DAPI(蓝色)染细胞核;WT与TKO内皮细胞中CD31均定位于细胞膜上,表达无明显差异
图6 WT和TKO内皮细胞中miR-148/152家族成员的表达分析注:WT为野生型,TKO为miR-148/152家族敲除;TKO内皮细胞中miR-148/152家族成员的检测丰度显著降低;实验设3个复孔,重复3次,aP < 0.001
表4 WT和TKO内皮细胞中miR-148/152成员表达分析(±s
图7 糖酵解相关基因在WT和TKO内皮细胞中的表达分析注:WT为野生型,TKO为miR-148/152家族敲除;TKO内皮细胞中糖酵解相关基因表达量显著降低;实验设3个复孔,重复3次,aP < 0.001,ns为无统计学意义
表5 WT和TKO组内皮细胞中糖酵解相关基因表达水平比较(±s
图8 氧化磷酸化相关基因在WT和TKO内皮细胞中的表达分析注:WT为野生型,TKO为miR-148/152家族敲除;TKO内皮细胞中PDK1表达量上升;实验设3个复孔,重复3次,aP < 0.001,ns为差异无统计学意义
表6 WT和TKO内皮细胞中氧化磷酸化相关基因表达水平比较(±s
图9 miR-148/152家族靶基因磷脂酶和张力蛋白同源物在WT和KO内皮细胞中的表达分析注:黄色标注为miR-148/152家族种子序列与靶基因磷脂酶和张力蛋白同源物的结合位点;WT为野生型,TKO为miR-148/152家族敲除,PTEN为磷脂酶和张力蛋白同源物;TKO内皮细胞中磷脂酶和张力蛋白同源物表达量显著升高;实验设3个复孔,重复3次,aP < 0.001
1
De Bock K, Georgiadou M, Schoors S, et al. Role of PFKFB3-driven glycolysis in vessel sprouting [J]. Cell, 2013, 154(3):651-663.
2
Wimmer RA, Leopoldi A, Aichinger M, et al. Generation of blood vessel organoids from human pluripotent stem cells[J]. Nat Protoc, 2019, 14(11): 3082-3100.
3
Lin Y, Gil CH, Yoder MC. Differentiation, evaluation, and application of human induced pluripotent stem cell-derived endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2017, 37(11):2014-2025.
4
Yoder MC. Differentiation of pluripotent stem cells into endothelial cells[J]. Curr Opin Hematol, 2015, 22(3):252-257.
5
Zhang C. MicroRNomics: a newly emerging approach for disease biology[J]. Physiol Genomics, 2008, 33(2):139-147.
6
Vienberg S, Geiger J, Madsen S, et al. MicroRNAs in metabolism[J]. Acta Physiol (Oxf), 2017, 219(2):346-361.
7
Taefehshokr S, Taefehshokr N, Hemmat N, et al. The pivotal role of MicroRNAs in glucose metabolism in cancer[J]. Pathology, research and practice, 2021, 217:153314.doi: 10.1016/j.prp.2020.153314.
8
Fang X, Miao S, Yu Y, et al. MIR148A family regulates cardiomyocyte differentiation of human embryonic stem cells by inhibiting the DLL1- mediated NOTCH signaling pathway[J]. J Mol Cell Cardiol, 2019, 134:1-12.
9
Friedrich M, Pracht K, Mashreghi MF, et al. The role of the miR- 148/- 152 family in physiology and disease[J]. Eur J Immunol, 2017, 47(12):2026-2038.
10
Qian X, Li X, Shi Z, et al. PTEN suppresses glycolysis by dephosphorylating and inhibiting autophosphorylated PGK1[J]. Mol Cell, 2019, 76(3):516-527.e7.
11
Leung SWS, Shi Y. The glycolytic process in endothelial cells and its implications[J]. Acta Pharmacol Sin, 2021.doi: 10.1038/s41401-021-00647-y.
12
Schoors S, De Bock K, Cantelmo AR, et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis[J]. Cell Metab, 2014, 19(1):37-48.
13
Eelen G, De Zeeuw P, Simons M, et al. Endothelial cell metabolism in normal and diseased vasculature[J]. Circ Res, 2015, 116(7):1231-1244.
14
Qian Y, Wu X, Wang H, et al. MicroRNA-4290 suppresses PDK1-mediated glycolysis to enhance the sensitivity of gastric cancer cell to cisplatin[J]. Braz J Med Biol Res, 2020, 53(5):e9330.doi: 10.1590/1414-431X20209330.
15
Qin Y, Cheng C, Lu H, et al. miR-4458 suppresses glycolysis and lactate production by directly targeting hexokinase2 in colon cancer cells[J]. Biochem Biophys Res Commun, 2016, 469(1):37-43.
16
Zhu W, Huang Y, Pan Q, et al. MicroRNA-98 Suppress Warburg Effect by Targeting HK2 in Colon Cancer Cells[J]. Dig Dis Sci, 2017, 62(3):660-668.
17
Hua S, Lei L, Deng L, et al. miR-139-5p inhibits aerobic glycolysis, cell proliferation, migration, and invasion in hepatocellular carcinoma via a reciprocal regulatory interaction with ETS1[J]. Oncogene, 2018, 37(12):1624-1636.
18
Végran F, Boidot R, Michiels C, et al. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF- κB/ IL-8 pathway that drives tumor angiogenesis[J]. Cancer Res, 2011, 71(7):2550-2560.
19
Rohlenova K, Veys K, Miranda-Santos I, et al. Endothelial cell metabolism in health and disease[J]. Trends Cell Biol, 2018, 28(3):224-236.
[1] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[2] 张锦, 郑瑾, 叶陈晓, 陈海滔, 李欣荣, 肖海娟, 郭勇. 基于糖酵解相关基因模型的乳腺癌患者预后及免疫功能综合分析[J]. 中华乳腺病杂志(电子版), 2022, 16(06): 336-345.
[3] 蔡维霞, 曹涛, 赵明, 肖丹, 贾艳慧, 王璟, 张月, 王克甲, 韩军涛, 胡大海. Notch信号通路对烧伤大鼠血清诱导的肺血管内皮细胞细胞间黏附分子-1的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 292-299.
[4] 罗丽芳, 刘哲夫, 董兵, 刘晓玲, 丘雨旻, 周喆, 何江, 夏文豪. 达格列净改善高糖诱导的人脐静脉内皮细胞功能的机制研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 10-18.
[5] 李婧娴, 韩兴龙, 涂元媛, 胡士军, 于淼, 雷伟. 内皮祖细胞在血管损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 176-180.
[6] 胡敏洁, 王思贤, 王永煜. 人诱导多能干细胞及其在血管相关疾病模型中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 167-175.
[7] 洪权. 从血管内皮探讨糖尿病肾病的进展机制[J]. 中华肾病研究电子杂志, 2023, 12(01): 60-60.
[8] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[9] 张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.
[10] 崔文兴, 葛顺楠, 屈延. 创伤性颅脑损伤后继发血管内皮细胞损伤机制的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 183-187.
[11] 王洁琼, 王慧霞, 赵慧颖, 安友仲. 血管紧张素转换酶2对人肺微血管内皮细胞炎性损伤的调控作用[J]. 中华重症医学电子杂志, 2023, 09(01): 78-83.
[12] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[13] 陶璐, 初楠, 韩洁, 白春英, 逄雯丽, 余海源. 血清PECAM-1、Sirt1水平与2型糖尿病患者颈动脉粥样硬化的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 291-296.
[14] 岑妍慧, 高月, 林江, 刘鹏, 贾微, 杨瑞, 黄威, 刘鑫, 黄泽萍, 宁志莹. 水解南珠液通过Wnt/β-catenin通路调节细胞自噬对人微血管内皮细胞氧化应激损伤的影响[J]. 中华临床医师杂志(电子版), 2023, 17(01): 72-79.
[15] 李少莹, 文莹, 贾翠萍, 张媛, 邓伟豪. 抑制糖毒性通路对细胞线粒体功能障碍的影响和潜在意义[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 65-70.
阅读次数
全文


摘要