[1] |
Schuh AC,Watkins NA,Nguyen Q, et al. A tyrosine703serine polymorphism of CD109 defines the Gov platelet alloantigens[J]. Blood, 2002, 99(5):1692-1698.
|
[2] |
Finnson KW,Tam BY,Liu K, et al. Identification of CD109 as part of the TGF-beta receptor system in human keratinocytes[J]. FASEB J, 2006, 20(9):1525-1527.
|
[3] |
Shiraki Y,Mii S,Enomoto A, et al. Significance of perivascular tumour cells defined by CD109 expression in progression of glioma[J]. J Pathol, 2017, 243(4):468-480.
|
[4] |
Sato T,Murakumo Y,Hagiwara S, et al. High-level expression of CD109 is frequently detected in lung squamous cell carcinomas[J]. Pathol Int, 2007, 57(11):719-724.
|
[5] |
Giesert C,Marxer A,Sutherland DR, et al. Antibody W7C5 defines a CD109 epitope expressed on CD34+ and CD34- hematopoietic and mesenchymal stem cell subsets[J]. Ann N Y Acad Sci, 2010, 996(1):227-230.
|
[6] |
Murray LJ,Bruno E,Uchida N, et al. CD109 is expressed on a subpopulation of CD34(+) cells enriched in hematopoietic stem and progenitor cells[J]. Exp Hematol, 1999, 27(8):1282-1294.
|
[7] |
Rappold I,Ziegler BL,Köhler I, et al. Functional and phenotypic characterization of cord blood and bone marrow subsets expressing FLT3 (CD135) receptor tyrosine kinase[J]. Blood, 1997, 90:111-125.
|
[8] |
Li J,Xin JJ,Zhang LY, et al. Human hepatic progenitor cells Express hematopoietic cell markers CD45 and CD109[J]. Int J Med Sci, 2014, 11(1):65-79.
|
[9] |
Ertel K,Al-Tawil M,Santoso S, et al. Relevance of the HPA-15(gov)polymorphism on CD109 in alloimmune thrombocytopenic syndromes [J]. Transfusion, 2005, 45(3):366-373.
|
[10] |
Hasegawa M,Hagiwara S,Sato T, et al. CD109, a new marker for myoepithelial cells of mammary,salivary,and lacrimal glands and prostate basal cells[J]. Pathol Int, 2007, 57(5):245-250.
|
[11] |
Sutherland DR,Yeo E,Ryan A, et al. Identification of a cell-surface antigen associated with activated T lymphoblasts and activated platelets [J]. Blood, 1991, 77(1):84-93.
|
[12] |
Solomon KR,Sharma P,Chan M, et al. CD109 represents a novel branch of the alpha 2-macroglobulin/complement gene family[J]. Gene, 2004, 327(2):171-183.
|
[13] |
Hashimoto M, Ichihara M, Watanabe T, et al. Expression of CD109 in human cancer[J]. Oncogene, 2004, 23(20):3716-3720.
|
[14] |
Mokrosiński J,Krajewska WM. TGF beta signalling accessory receptors[J]. Postepy Biochem, 2008, 54(3): 264-273.
|
[15] |
Bernabeu C,Lopez-Novoa JM,Quintanilla M. The emerging role of TGF-beta superfamily coreceptors in cancer[J]. Biochim Biophys Acta, 2009, 1792(10):954-973.
|
[16] |
Li C,Hancock MA,Sehgal P, et al. Soluble CD109 binds TGF-beta and antagonizes TGF-beta signalling and responses[J]. Biochem J, 2016, 473(5):537-547.
|
[17] |
Bizet AA,Liu K,Tran-Khanh N, et al. The TGF-β co-receptor, CD109, promotes internalization and degradation of TGF-β receptors[J]. Biochim Biophys Acta, 2011, 1813(5):742-753.
|
[18] |
Bizet AA,Tran-Khanh N,Saksena A, et al. CD109-mediated degradation of TGF-β receptors and inhibition of TGF-β responses involve regulation of SMAD7 and Smurf2 localization and function[J]. J Cell Biochem, 2012, 113(1):238-246.
|
[19] |
Tsai YL,Ha DP,Zhao H, et al. Endoplasmic reticulum stress activates SRC, relocating chaperones to the cell surface where GRP78/CD109 blocks TGF-beta signaling[J]. Proc Natl Acad Sci U S A, 2018, 115(18):E4245-E4254.
|
[20] |
Winocour S,Vorstenbosch J,Trzeciak AA, et al. CD109, a novel TGF-beta antagonist, decreases fibrotic responses in a hypoxic wound model [J]. Exp Dermatol, 2014, 23(7):475-479.
|
[21] |
Vorstenbosch J,Gallant-Behm C,Trzeciak A, et al. Transgenic mice overexpressing CD109 in the epidermis display decreased inflammation and granulation tissue and improved collagen architecture during wound healing[J]. Wound Repair Regen, 2013, 21(2):235-246.
|
[22] |
Yokoyama M,Ichinoe M,Okina S, et al. CD109, a negative regulator of TGF-β signaling, is a putative risk marker in diffuse large B-cell lymphoma[J]. Int J Hematol, 2017, 105(5):614-622.
|
[23] |
Zong GJ,Xu ZW,Zhang SS, et al. CD109 mediates cell survival in hepatocellular carcinoma cells[J]. Dig Dis Sci, 2016, 61(8):2303-2314.
|
[24] |
Levy DE,Darnell JE. STATs: transcriptional control and biological impact[J]. Nat Rev Mol Cell Biol, 2002, 3(9):651-662.
|
[25] |
Shinagawa K,Yanamoto S,Naruse T, et al. Clinical roles of interleukin-6 and STAT3 in oral squamous cell carcinoma[J]. Pathol Oncol Res, 2017, 23(2):425-431.
|
[26] |
Kusaba T,Nakayama T,Yamazumi K, et al. Expression of p-STAT3 in human colorectal adenocarcinoma and adenoma;correlation with clinicopathological factors[J]. J Clin Pathol, 2005, 58(8):833-838.
|
[27] |
Litvinov IV,Bizet AA,Binamer Y, et al. CD109 release from the cell surface in human keratinocytes regulates TGF-beta receptor expression, TGF-beta signalling and STAT3 activation: relevance to psoriasis[J]. Exp Dermatol, 2011, 20(8):627-632.
|
[28] |
Mii S,Murakumo Y,Asai N, et al. Epidermal hyperplasia and appendage abnormalities in mice lacking CD109[J]. Am J Pathol, 2012, 181(4):1180-1189.
|
[29] |
Chuang CH,Greenside PG,Rogers ZN, et al. Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis[J]. Nat Med, 2017, 23(3):291-300.
|
[30] |
Singh D,Attri BK,Gill RK, et al. Review on EGFR inhibitors: critical updates[J]. Mini Rev Med Chem, 2016, 16(14):1134-1166.
|
[31] |
Jedlinski A,Garvin S,Johansson AC, et al. Cetuximab sensitivity of head and neck squamous cell carcinoma xenografts is associated with treatment-induced reduction in EGFR, pEGFR, and pSrc[J]. J Oral Pathol Med, 2016, 46(9):717-724.
|
[32] |
Joshi A,Zanwar S,Noronha V, et al. EGFR mutation in squamous cell carcinoma of the lung: does it carry the same connotation as in adenocarcinomas?[J]. Onco Targets Ther, 2017, 10:1859-1863.
|
[33] |
Gonzales CB,De LA Chapa JJ,Saikumar P, et al. Co-targeting ALK and EGFR parallel signaling in oral squamous cell carcinoma[J]. Oral Oncol, 2016, 59:12-19.
|
[34] |
Zhang JM,Hashimoto M,Kawai K, et al. CD109 expression in squamous cell carcinoma of the uterine cervix[J]. Pathol Int, 2005, 55(4):165-169.
|
[35] |
Hagiwara S,Murakumo Y,Sato T, et al. Up-regulation of CD109 expression is associated with carcinogenesis of the squamous epithelium of the oral cavity[J]. Cancer Sci, 2008, 99(10):1916-1923.
|
[36] |
Dong F,Liu F,Yan S, et al. Elevated expression of CD109 in esophageal squamous cell carcinoma[J]. Pathol Oncol Res, 2015, 21(4):1273-1275.
|
[37] |
Dong FY,Wang J,Xu YH, et al. CD109 expression is upregulated in penile squamous cell carcinoma[J]. Oncol Lett, 2017, 14(5):6012-6016.
|
[38] |
Zhang JM,Murakumo Y,Hagiwara S, et al. CD109 attenuates TGF-beta 1 signaling and enhances EGF signaling in SK-MG-1 human glioblastoma cells[J]. Biochem Biophys Res Commun, 2015, 459(2):252-258.
|
[39] |
Perou CM,Sorlie T,Eisen MB, et al. Molecular portraits of human breast tumours[J]. Nature, 2000, 406(6797):747-752.
|
[40] |
Sorlie T,Tibshirani R,Parker J, et al. Repeated observation of breast tumor subtypes in Independent gene expression data sets[J]. Proc Natl Acad Sci U S A, 2003, 100(14):8418-8423.
|
[41] |
Bertucci F,Finetti P,Birnbaum D. Basal breast cancer:a complex and deadly molecular subtype[J]. Curr Mol Med, 2012, 12(1):96-110.
|
[42] |
Hasegawa M,Moritani S,Murakumo Y, et al. CD109 expression in basal-like breast carcinoma[J]. Pathol Int, 2008, 58(5):288-294.
|
[43] |
侍朋举,赵燕会,蔡海峰, 等. CD109在基底细胞样乳腺癌中的表达及意义[J]. 实用肿瘤杂志, 2012, 27(6):613-616.
|
[44] |
侍朋举,蔡海峰,牛凤玲, 等. CD109、HMW-CK、Vimentin、p63和AR在基底细胞样乳腺癌中的表达及其临床意义[J]. 临床肿瘤学杂志, 2012, 17(10):884-888.
|
[45] |
Tao J,Li HB,Li QW, et al. CD109 is a potential target for triple-negative breast cancer[J]. Tumour Biol, 2014, 35(12):12083-12090.
|
[46] |
Hockla A,Radisky DC,Radisky ES. Mesotrypsin promotes malignant growth of breast cancer cells through shedding of CD109[J]. Breast Cancer Res Treat, 2010, 124(1):27-38.
|
[47] |
Chen C,Duan J,Shen A, et al. Transplantation of human umbilical cord blood-derived mononuclear cells induces recovery of motor dysfunction in a rat model of Parkinson's disease[J]. Journal of Neurorestoratology, 2016, 4:23-33.
|
[48] |
Sunagawa M,Mii S,Enomoto A, et al. Suppression of skin tumorigenesis in CD109-deficient mice[J]. Oncotarget, 2016, 7(50): 82836-82850.
|
[49] |
Liu XX,Feng AP,He YM, et al. Association of down-regulation of CD109 expression with up-expression of Smad7 in pathogenesis of psoriasis[J]. J Huazhong Univ Sci Technolog Med Sci, 2016, 36(1):132-136.
|
[50] |
Zhou S,Cecere R,Philip A, CD109 released from human bone marrow mesenchymal stem cells attenuates TGF-β-induced epithelial to mesenchymal transition and stemness of squamous cell carcinoma[J]. Oncotarget, 2017, 8(56):95632-95647.
|
[51] |
Vorstenbosch J,Nguyen CM,Zhou SA, et al. Overexpression of CD109 in the epidermis differentially regulates ALK1 versus ALK5 signaling and modulates extracellular matrix synthesis in the skin[J]. J Invest Dermatol, 2017, 137(3):641-649.
|
[52] |
Zhao YY,Ma J,Fan YL, et al. TGF-beta transactivates EGFR and facilitates breast cancer migration and invasion through canonical Smad3 and ERK/Sp1 signaling pathways[J]. Mol Oncol, 2018, 12(3):305-321.
|
[53] |
Zhang LY,Fu ZL,Li X, et al. Transforming growth factor -activated kinase 1 inhibitor suppresses the proliferation in triple-negative breast cancer through TGF-/TGFR pathway[J]. Chem Biol Drug Des, 2017, 90(3):450-455.
|