切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (03) : 173 -181. doi: 10.3877/cma.j.issn.2095-1221.2019.03.008

所属专题: 文献

论著

MSCs线粒体转移对脑缺血后损伤修复的作用研究
叶伟1, 葛忆秦1,(), 徐侃1   
  1. 1. 200062 上海市普陀区中心医院神经外科
  • 收稿日期:2019-01-29 出版日期:2019-06-01
  • 通信作者: 葛忆秦

Transfer of MSCs mitochondria facilitate the recovery of stroke

Wei Ye1, Yiqin Ge1,(), Kan Xu1   

  1. 1. Department of Neurosurgery, Shanghai Putuo District Central Hospital, Shanghai 200062, China
  • Received:2019-01-29 Published:2019-06-01
  • Corresponding author: Yiqin Ge
  • About author:
    Corresponding author: Ge Yiqin, Email:
引用本文:

叶伟, 葛忆秦, 徐侃. MSCs线粒体转移对脑缺血后损伤修复的作用研究[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(03): 173-181.

Wei Ye, Yiqin Ge, Kan Xu. Transfer of MSCs mitochondria facilitate the recovery of stroke[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(03): 173-181.

目的

探索骨髓基质细胞(MSCs)中线粒体转移在脑缺血后的损伤保护作用。

方?法

采用小鼠骨髓MSCs分离与原代培养方法,培养MSCs并通过流式细胞仪进行鉴定;取出生后第0天(P0)SD幼鼠的皮层,进行原代神经元培养,并进行氧糖剥夺(OGD)处理,将含有线粒体的MSCs培养基(MCM)组和不含有线粒体的MSCs培养基(mdMCM)组与OGD神经元进行共培养,另以未经过OGD处理的神经元(Neuron组)和经过OGD处理的神经元(OGD组)作为对照;通过MitoTracker追踪线粒体,分析线粒体从MSCs向OGD神经元的转移情况;通过检测试剂盒对神经元内ATP含量和神经元活性进行分析;通过对线粒体膜电势检测,分析线粒体的功能;采用Western Blot分析线粒体Miro1蛋白的表达水平;通过MCAO造模和计算梗死体积,分析MSCs移植对脑缺血的保护作用。采用方差分析和t检验进行统计学分析。

结?果

原代培养的骨髓MSCs纯度达到99﹪以上。取原代培养MSCs的培养基分别去除线粒体(mdMCM)与不去除线粒体(MCM),与OGD神经元共培养,在MCM组,观察到神经元中存在MSCs来源的线粒体;经过OGD处理的神经元,其胞内ATP水平降低至0.634±0.023,给予MCM处理后,神经元胞内ATP水平上升至1.623±0.039,当给予mdMCM处理后,神经元胞内ATP水平降低至0.645±0.011,ATP比率变化的差异具有统计学意义(F?= 3413.62,P?< 0.01);经过OGD处理,神经元活性降低至(73.7±1.12)﹪;给予MCM处理后,神经元活升高到(83.3±1.57)﹪,当给予mdMCM处理后,神经元活性降低至(72.9±1.25)﹪,与MCM组相比差异具有统计学意义(F?= 654.280,P?< 0.01)。在未经过处理的对照组中,线粒体膜电势丢失1.7﹪;经过OGD处理后,膜电势丢失70.3﹪;添加MCM后的OGD神经元,线粒体膜电势丢失44.7﹪,与OGD组相比,差异具有统计学意义(P?= 0.036);而添加mdMCM的OGD处理神经元,线粒体膜电势丢失67.7﹪,与OGD+MCM组相比,差异具有统计学意义(P?= 0.041)。给予CCCP处理后的阳性对照神经元,膜电势丢失为99.3﹪。在Miro1表达干预中,空白对照组神经元胞内的ATP平均水平记为1,神经元活性为100﹪,计算其余各组相对空白对照组的ATP水平和神经元活性。在Miro1高表达组,胞内ATP水平为2.304,与对照质粒组(ratio = 1.611)相比,差异具有统计学意义(P?= 0.034);神经元活性检测中,Miro1高表达组相比对照质粒组(90.4﹪vs 81.7﹪),差异具有统计学意义(P?= 0.040)。在MCAO手术后,小鼠的脑梗死体积达到38.4﹪,而给予MSCs后的小鼠,梗死面积降低到14.4﹪,差异具有统计学意义(P?= 0.004)。

结论

MSCs来源的线粒体可以向损伤神经元转移,提升神经元胞内ATP水平和神经元活性,降低缺血损伤中小鼠的脑梗死体积。线粒体Miro1蛋白参与了线粒体向神经元转移保护过程。

Objective

To explore MSCs mitochondria transfer mediated protection after stroke.

Methods

Isolation and primary culture of bone MSCs of mice. FACS was used to identify the purity of primary MSCs. Primary neuron cultures were prepared from the cerebral cortex of postnatal day 0 (P0) SD rats. OGD (oxygen-glucose deprivation) was performed on the primary neurons. OGD neurons were grouped into MCM group (MSCs conditioned mitochondria, MCM) , mdMCM group (depleted extracellular mitochondria in MCM, mdMCM) , OGD group and normal neurons which labeled as Neuron group. MitoTracker was used to track the mitochondria transfer from MSCs to OGD neurons. Detection kits was used to analyze the ATP level and viability of neurons. Membrane potential of mitochondria was analyzed by detection kit to measure the function of mitochondria. The expression of Miro1 protein was performed by Western Blot. The protection of MSCs transplant was performed by MCAO and MSCs injection. Statistical analysis was performed using analysis of variance and t-tests.

Results

The purity of primary cultured MSCs was higher than 99﹪. Mitochondria transfer from MSCs to OGD neurons was observed. The transfer of mitochondria protected OGD neurons by increasing the ATP level, and the mdMCM group ATP level were significant lower than MCM group. (0.634±0.023 in OGD group, 1.623±0.039 in MCM group and 0.645±0.011 in mdMCM group, F = 3413.62, P < 0.01) ; And the viability of neurons in MCM group higher than in OGD group, and the viability of neurons in mdMCM group were significant lower than MCM group[ (73.7±1.12) ﹪ in OGD group, (83.3±1.57) ﹪ in MCM group and (72.9±1.25) ﹪ in mdMCM group, F = 654.280, P < 0.01]. And the membrane potential loss of mitochondria in OGD and mdMCM groups were significantly higher than in MCM group. (70.3﹪ in OGD group, 44.7﹪ in MCM group and 67.7﹪ in mdMCM group, P < 0.05) . After intervention of Miro1, the ATP level increased in Miro1-overexpression group (2.304 vs 1.611 in control group, P?= 0.034) ; the neuronal viability also increased in Miro1-overexpression group (90.4﹪ vs 81.7﹪ in control group, P?= 0.040) . After MCAO, the infarct volume of mice reached 38.4﹪, while the MSCs-injected mice decreased to 14.4﹪ (P?= 0.004) .

Conclusion

MSCs transplantation decreased the infarct volume of MCAO mice and the protection may be mediated by Miro1 protein.

图1 相差显微镜下观察培养的MSCs细胞(×200)
图2 相差显微镜下观察培养MSC细胞流式细胞仪分析结果
图3 Olympus FV-1000显微镜下观察OGD神经元与MSC来源线粒体(免疫组织荧光染色,×60)
表1 不同处理条件下细胞内ATP比率和细胞活力的差异(±s
图4 神经元胞内ATP水平和神经元活性检测结果
图5 正常神经元、不同OGD处理模型和CCCP处理后神经元线粒体膜电势检测
图6 正常神经元、不同OGD处理模型和CCCP处理后神经元线粒体膜电点位丢失情况
图7 神经元、Mirol高表达组对照质粒组胞内ATP比率和细胞活力比较
图8 荧光显微镜下观察两组半暗带区域(免疫荧光染色,×1?000)
图9 两组小鼠大脑切片TTC染色比较
[1]
Bernstock JD,Peruzzotti-Jametti L,Ye D, et al. Neural stem cell transplantation in ischemic stroke: A role for preconditioning and cellular engineering[J]. J Cereb Blood Flow Metab, 2017, 37(7):2314-2319.
[2]
Cheng Q,Zhang Z,Zhang S, et al. Human umbilical cord mesenchymal stem cells protect against ischemic brain injury in mouse by regulating peripheral immunoinflammation[J]. Brain Res, 2015, 1594: 293-304.
[3]
Lo Furno D,Mannino G,Giuffrida R. Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases[J]. J Cell Physiol, 2018, 233(5): 3982-3999.
[4]
Isern J,Garcia-Garcia A,Martin AM, et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function[J]. ELife, 2014, 3: e03696.
[5]
Jadasz JJ,Tepe L,Beyer F, et al. Human mesenchymal factors induce rat hippocampal-and human neural stem cell dependent oligodendrogenesis[J]. Glia, 2018, 66(1): 145-160.
[6]
Chen J,Li Y,Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats[J]. Stroke, 2001, 32(4): 1005-1011.
[7]
Li Y,Chopp M,Chen J, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice[J]. J Cereb Blood Flow Metab, 2000, 20(9):1311-1319.
[8]
Hsuan YC,Lin CH,Chang CP, et al. Mesenchymal stem cell-based treatments for stroke, neural trauma, and heat stroke[J]. Brain Behav, 2016, 6(10):e00526.
[9]
Hayakawa K,Esposito E,Wang X, et al. Transfer of mitochondria from astrocytes to neurons after stroke[J]. Nature, 2016, 535(7613): 551-555.
[10]
Writing Group M,Mozaffarian D,Benjamin EJ, et al. Executive Summary: Heart Disease and Stroke Statistics--2016 Update: A Report From the American Heart Association[J]. Circulation, 2016, 133(4): 447-454.
[11]
Kim AS,Johnston SC. Temporal and geographic trends in the global stroke epidemic[J]. Stroke, 2013, 44(6 Suppl 1): S123-125.
[12]
Roullet S,Labrouche S,Mouton C, et al. Lysis Timer: a new sensitive tool to diagnose hyperfibrinolysis in liver transplantation[J]. J Clin Pathol, 2019, 72(1): 58-65.
[13]
Munir H,McGettrick HM. Mesenchymal Stem Cell Therapy for Autoimmune Disease: Risks and Rewards[J]. Stem Cells Dev, 2015, 24(18): 2091-2100.
[14]
Rosenberg SA,Yang JC,Restifo NP. Cancer immunotherapy: moving beyond current vaccines[J]. Nat Med, 2004, 10(9): 909-915.
[15]
Vargas AJ,Harris CC. Biomarker development in the precision medicine era: lung cancer as a case study[J]. Nat Rev Cancer, 2016, 16(8): 525-537.
[16]
Voloboueva LA,Suh SW,Swanson RA, et al. Inhibition of mitochondrial function in astrocytes: implications for neuroprotection[J]. J Neurochem, 2007, 102(4):1383-1394.
[17]
Nzigou Mombo B,Gerbal-Chaloin S,Bokus A, et al. MitoCeption: Transferring Isolated Human MSC Mitochondria to Glioblastoma Stem Cells[J]. J Vis Exp, 2017:120.
[18]
Mahrouf-Yorgov M,Augeul L,Da Silva CC, et al. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties[J]. Cell Death Differ, 2017, 24(7): 1224-1238.
[19]
Ahmad T,Mukherjee S,Pattnaik B, et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy[J]. EMBO J, 2014, 33(9):994-1010.
[1] 邢小炜, 钱琦, 金平. 肝X受体β在电针治疗慢性脑缺血炎性损伤中的作用研究[J]. 中华危重症医学杂志(电子版), 2022, 15(02): 122-126.
[2] 张艳, 王俊, 严永兴, 顾婧, 魏颖楠, 沈咏慧. 3-乙酰基-11-酮-β乳香酸对大鼠脑缺血再灌注损伤的保护作用及其机制研究[J]. 中华危重症医学杂志(电子版), 2021, 14(06): 466-471.
[3] 何彬, 王静. 彩色多普勒超声血流参数、血清尿酸、胱抑素C对短暂性脑缺血发作患者颈动脉狭窄的诊断价值[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 289-294.
[4] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[5] 王静, 何彬. 经颅彩色多普勒超声联合血sCD40L、Fib、PAF对短暂性脑缺血发作后脑梗死的预测效果[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 222-227.
[6] 杨梦琦, 马慧芬, 訾阳, 王楠, 杜冰玉, 常万鹏, 于少泓. 马黛茶对脑血管疾病防治作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 235-240.
[7] 郑薏, 彭雯雯, 钟月丽. MicroRNA-34a调控电针对缺血再灌注损伤大鼠反应性星形胶质细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 135-141.
[8] 康晓宇, 刘丽旭. 心肺复苏后全脑缺血再灌注损伤的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(02): 116-120.
[9] 秦琳, 华键, 潘晓帆. 脑白质病变与老年首次短暂性脑缺血/轻型卒中患者认知功能障碍的研究[J]. 中华临床医师杂志(电子版), 2020, 14(01): 7-12.
[10] 段作伟, 杨明, 郑艳宇, 陶丽红, 陈斌. 高危小卒中/短暂性脑缺血发作患者血压变异性与早期神经功能恶化的相关性[J]. 中华临床医师杂志(电子版), 2019, 13(12): 893-897.
[11] 季鹏, 郭言言, 王超. CT灌注成像联合CT血管造影对TIA患者进展为急性脑梗死的预测[J]. 中华介入放射学电子杂志, 2023, 11(02): 128-132.
[12] 江哲宇, 蒋天鹏, 周石, 王黎洲. 微小RNA在脑缺血再灌注损伤中的研究现状与进展[J]. 中华介入放射学电子杂志, 2022, 10(01): 75-82.
[13] 朱旭, 郭翠霞, 魏洁, 张宁, 王喜旺, 于国渊. 脑灌注压联合血小板体积指数对颅内动脉瘤栓塞术后迟发性脑缺血的预测价值[J]. 中华脑血管病杂志(电子版), 2022, 16(06): 392-397.
[14] 洪泽璇, 陶涛, 秦再生. 蛋白质翻译后修饰在脑缺血再灌注中的作用[J]. 中华脑血管病杂志(电子版), 2022, 16(02): 125-129.
[15] 许娜, 渠静, 王赛楠, 江炜, 耿晓坤. 大鼠脑缺血再灌注损伤后脑组织高迁移率族蛋白1表达的变化[J]. 中华脑血管病杂志(电子版), 2021, 15(05): 297-301.
阅读次数
全文


摘要