切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (03) : 166 -172. doi: 10.3877/cma.j.issn.2095-1221.2019.03.007

所属专题: 文献

论著

下调TLR4对LPS诱导的支气管上皮16HBE细胞损伤的影响及其机制
申光富1, 罗长琴1, 黄波1, 毕靖1, 张璇1, 余蕊1, 杨俊1, 谢军1, 杜培1,()   
  1. 1. 725000 安康,陕西省安康市中心医院呼吸内科
  • 收稿日期:2019-04-03 出版日期:2019-06-01
  • 通信作者: 杜培

Effect of TLR4 on LPS-induced bronchial epithelial 16HBE cell injury

Guangfu Shen1, Changqin Luo1, Bo Huang1, Jing Bi1, Xuan Zhang1, Rui Yu1, Jun Yang1, Jun Xie1, Pei Du1,()   

  1. 1. Department of Respiratory Medicine, Ankang Central Hospital, Ankang 725000, China
  • Received:2019-04-03 Published:2019-06-01
  • Corresponding author: Pei Du
  • About author:
    Corresponding author: Du Pei, Email:
引用本文:

申光富, 罗长琴, 黄波, 毕靖, 张璇, 余蕊, 杨俊, 谢军, 杜培. 下调TLR4对LPS诱导的支气管上皮16HBE细胞损伤的影响及其机制[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(03): 166-172.

Guangfu Shen, Changqin Luo, Bo Huang, Jing Bi, Xuan Zhang, Rui Yu, Jun Yang, Jun Xie, Pei Du. Effect of TLR4 on LPS-induced bronchial epithelial 16HBE cell injury[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(03): 166-172.

目的

探讨TLR4对脂多糖(LPS)诱导的支气管上皮16HBE细胞损伤的影响及其机制。

方法

将3条siRNA-TLR4-1、siRNA-TLR4-2和siRNA-TLR4-3转染至16HBE细胞中,筛选出最佳的siRNA-TLR4干扰序列进行实验。实验分为对照组(未处理)、LPS组(给予50 μg/ml LPS处理)、LPS+siNC组(转染siRNA-NC后给予50 μg/ml LPS处理)和LPS+siTLR4组(分别转染设计的3条siRNA-TLR4后给予50 μg/ml LPS处理),采用RT-PCR检测TLR4、IL-6和TNF-α mRNA的表达,MTT法检测细胞活力,流式细胞仪检测细胞凋亡率,Western Blot检测Bcl-2、Bax、Cleaved Caspase-3、NF-κB p65和IκBα蛋白的表达。多组间比较使用单因素方差分析,组间多重比较采用SNK-q,两组间比较采用独立样本t检验。

结果

LPS组与LPS+siTLR4-2组TLR4 mRNA(2.05±0.12,3.28±0.15)和蛋白表达(0.38±0.03,0.77±0.05)比较,差异具有统计学意义(t?= 11.091,11.585,P均< 0.001);LPS组与LPS+siTLR4-3组TLR4 mRNA(1.39±0.09,3.28±0.15)和蛋白表达(0.31±0.02,0.77±0.05)比较,差异具有统计学意义(t?= 20.857,12.650,P?< 0.001)且siRNA-TLR4-3的效果最为显著。与对照组相比,LPS组、LPS+siNC组和LPS+siTLR4组细胞中IL-6 mRNA(11.42±1.05,11.38±1.34,6.22±0.35,0.97±0.06,F?= 98.803,P均< 0.01)、TNF-α mRNA(15.76±1.12,15.69±0.87,7.54±0.41,1.03±0.09,F?= 278.064,P均< 0.01)、Cleaved Caspase-3蛋白(0.75±0.06,0.77±0.05,0.38±0.03,0.13±0.02,F?= 154.851,P均< 0.01)、Bax蛋白(0.48±0.05,0.52±0.05,0.33±0.02,0.11±0.02,F?= 71.310,P均< 0.01)、NF-κBp65蛋白(0.64±0.05,0.67±0.05,0.45±0.04,0.28±0.02,F?= 56.571,P??< 0.01)的表达水平和细胞凋亡率[(21.36±2.85)﹪,(20.94±3.22)﹪,(13.08±1.16)?﹪,(7.25±1.28)﹪,F?= 25.685,P均< 0.01]均明显升高,而细胞活力(0.53±0.04,0.51±0.04,0.78±0.06,1.15±0.08,F?= 80.811,P均< 0.01)和Bcl-2蛋白(0.28±0.03,0.25±0.03,0.40±0.03,0.69±0.06,F?= 76.762,P均< 0.01)、IκBα蛋白(0.38±0.03,0.35±0.03,0.44±0.03,0.72±0.06,F?= 53.635,P均< 0.01)的表达水平均明显降低;与LPS组相比,LPS+siTLR4组中IL-6 mRNA、TNF-α mRNA、Cleaved Caspase-3蛋白、Bax蛋白、NF-κBp65蛋白的表达水平和细胞凋亡率均明显降低,差异有统计学意义(t = 8.138,11.937,9.553,4.825,5.140,4.661,P均< 0.01),而细胞活力和Bcl-2蛋白、IκBα蛋白的表达水平均明显升高,差异有统计学意义(t = 6.005,4.899,3.674,P < 0.05),而LPS组和LPS+siNC组间差异无统计学意义(P > 0.05)。

结论

下调TLR4可通过抑制NF-κB通路激活抑制LPS诱导的细胞凋亡和炎症反应减轻16HBE细胞损伤。

Objective

To investigate the effect of TLR4 on LPS-induced bronchial epithelial 16HBE cell injury and its mechanism.

Methods

Three siRNA-TLR4-1, siRNA-TLR4-2 and siRNA-TLR4-3 were transfected into 16HBE cells, and the best interference sequence was screened for experiment. The experiment was divided into a control group (untreated) , LPS group (treated with 50?μg/ml LPS) , LPS + siNC group (treated with 50?μg/mL LPS after transfection of siRNA-?NC) and LPS + siTLR4 group (treated with 50?μg/ml LPS after transfection of siRNA-TLR4) . The expression of TLR4, IL-6 and TNF-α was detected by RT-PCR, cell viability was detected by MTT, apoptotic rate was detected by flow cytometry, and the expression of Bcl-2, Bax, Cleaved Caspase-?3, NF-κBp65 and IκBα proteins were tested by Western Blot. One-way analysis of variance was used for comparison between groups. SNK-q was used for multiple comparisons between groups, and independent sample t test was used for comparison between the two groups.

Results

The TLR4 mRNA (2.05±0.12 vs 3.28±0.15) and protein expression (0.38±0.03 vs 0.77±0.05) in the LPS group and the LPS+siTLR4-2 group were statistically significant (t?= 11.091, 11.585, P?< 0.001) ; the expressions of TLR4 mRNA (1.39±0.09 vs 3.28±0.15) and protein (0.31±0.02 vs 0.77±0.05) in LPS group and LPS+siTLR4-3 group were statistically significant (t?= 20.857, 12.650, P?< 0.001) . The effect of siRNA-TLR4-3 was more significant. Compared with the control group, the expression levels of IL-6 mRNA (11.42±1.05, 11.38±1.34, 6.22±0.35 vs 0.97±0.06, F?= 98.803, P?< 0.01) , TNF-α mRNA (15.76±1.12, 15.69±0.87, 7.54±0.41 vs 1.03±0.09, F?=278.064, P?< 0.01) , Cleaved Caspase-3 protein (0.75±0.06, 0.77±0.05, 0.38±0.03 vs 0.13±0.02; F?= 154.851, P?< 0.01) , Bax protein (0.48±0.05, 0.52±0.05, 0.33±0.02 vs 0.11±0.02; F?= 71.310, P?< 0.01) , NF-?κBp65 protein (0.64±0.05, 0.67±0.05, 0.45±0.04 vs 0.28±0.02; F?= 56.571, P?< 0.01) and apoptotic rate[ (21.36±2.85) ﹪, (20.94±3.22) ﹪, (13.08±1.16) ﹪ vs (7.25±1.28) ﹪; F?= 25.685, P?< 0.01] in LPS group, LPS+siNC group and LPS+siTLR4 group were significantly higher, while the cell viability (0.53±0.04, 0.51±0.04, 0.78±0.06 vs 1.15±0.08; F?= 80.811, P?< 0.01) and expression levels of Bcl-2 (0.28±0.03, 0.25±0.03, 0.40±0.03 vs 0.69±0.06; F?= 76.762, P?< 0.01) and IκBα (0.38±0.03, 0.35±0.03, 0.44±0.03 vs 0.72±0.06; F?= 53.635, P?< 0.01) proteins were significantly lower (P?< 0.05) ; compared with LPS+siTLR4 group, the expression levels of IL-6 mRNA, TNF-α mRNA, Cleaved Caspase-3 protein, Bax protein, NF-κBp65 protein and apoptotic rate in LPS+ siTLR4 group were significantly lower, with a significant difference (t?= 8.138, 11.937, 9.553, 4.825, 5.140, 4.661, P?< 0.01) , while the expression levels of cell viability and Bcl-2 protein and IκBα protein were significantly increased , with a significant difference (t?= 6.005, 4.899, 3.674, P?< 0.05) , while there was no significant difference between LPS group and LPS+siNC group (P?> 0.05) .

Conclusion

Downregulation of TLR4 can alleviate 16HBE cell injury by inhibiting activation of NF-κB pathway, inhibiting LPS-induced apoptosis and inflammation.

表1 各组16HBE细胞中TLR4 mRNA和蛋白的表达(n = 3,±s
图1 Western Blot检测TLR4蛋白的表达结果
表2 各组16HBE细胞中IL-6和TNF-α mRNA的表达(n = 3,±s
表3 各组16HBE细胞的OD值和凋亡率(n = 3,±s
图2 流式细胞仪检测细胞凋亡
表4 各组16HBE细胞中凋亡相关蛋白的表达水平(n = 3,±s
图3 Western Blot检测Bcl-2、Bax和Cleaved Caspase-3蛋白的表达
表5 各组16HBE细胞中NF-κB信号通路相关蛋白表达(n = 3,±s
图4 Western Blot检测IκBα和NF-κBp65蛋白的表达
[1]
Cornelia B,Jonathan D,Rachel B, et al. Modulation of human airway barrier functions during burkholderia thailandensis and francisella tularensis infection running title: airway barrier functions during bacterial infections[J]. Pathogens, 2016, 5(3):53.
[2]
Jeong JH,Kim J,Kim J, et al. ACN9 regulates the inflammatory responses in human bronchial epithelial cells[J]. Tuberc Respir Dis (Seoul), 2017, 80(3):247-254.
[3]
Ling KM,Sutanto EN,Iosifidis TA, et al. Reduced transforming growth factor β1(TGF-β1)in the repair of airway epithelial cells of children with asthma[J]. Respirology, 2016, 21(7):1219-1226.
[4]
Sugita K,Steer CA,Martinezgonzalez I, et al. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions via IL-13 in asthma[J]. J Allergy Clin Immunol, 2017, 141(1): 300-310.
[5]
Li CL,Xu ZB,Fan XL, et al. MicroRNA-21 mediates the protective effects of mesenchymal stem cells derived from iPSCs to human bronchial epithelial cell injury under hypoxia[J]. Cell Transplant, 2018, 27(3):571-583.
[6]
Shi L,Dong N,Ji DX, et al. Lipopolysaccharide-induced CCN1 production enhances interleukin-6 secretion in bronchial epithelial cells[J]. Cell Biol Toxicol, 2018, 34(1):39-49.
[7]
Ru Q,Xiong Q,Chen L, et al. Lipopolysaccharide accelerates fine particulate matter-induced cell apoptosis in human lung bronchial epithelial cells[J]. Int J Occup Med Environ Health, 2018, 31(2):173-183.
[8]
Murdock JL, Gabriel Núñez. TLR4: The winding road to the discovery of the LPS receptor[J]. J Immunol, 2016, 197(7):2561-2562.
[9]
Ding SM,Hou XE,Yuan JR, et al. Wedelolactone protects human bronchial epithelial cell injury against cigarette smoke extract-induced oxidant stress and inflammation responses through Nrf2 pathway[J]. Int Immunopharmacol, 2015, 29(2):648-655.
[10]
Li C,Zhihong H,Wenlong L, et al. The NLRP3 inflammasome regulates bronchial epithelial cell injury and pro-apoptosis after exposure to biomass fuel smoke[J]. Am J Resp Cell Mol, 2016, 55(6): 815.
[11]
Kawamoto Y,Morinaga Y,Kimura Y, et al. TNF-alpha inhibits the growth of Legionella pneumophila in airway epithelial cells by inducing apoptosis[J]. J Infect Chemother, 2017, 23(1):51-55.
[12]
Perrin-Cocon L,Aublin-Gex A,Sestito SE, et al. TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection[J]. Sci Rep, 2017, 7:40791.
[13]
闫鹏展,赵礼金,涂奎, 等. TLR4在LPS诱导的大鼠肝内胆管组织损伤中的作用及机制[J]. 山东医药, 2017 (24):15-18.
[14]
吴乙偲,郑世翔,陈星华, 等. TLR4在脂多糖诱导肾小管上皮细胞MAPK信号通路中的作用及其机制[J]. 武汉大学学报(医学版), 2016, 37(5):708-713.
[15]
Choy KW,Lau YS,Murugan D, et al. Paeonol attenuates LPS-induced endothelial dysfunction and apoptosis by inhibiting BMP4 and TLR4 signalling simultaneously but independently[J]. J Pharmacol Exp Ther, 2018, 364(3):420-432.
[16]
刘翠翠,赵龙,石晓岚. 等.茶多酚对脂多糖诱导的支气管上皮细胞损伤的保护作用及其机制[J]. 中国儿童保健杂志, 2017, 25(10): 1015-1018.
[17]
Lai JL,Liu YH,Liu C, et al. Indirubin inhibits LPS-Induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways[J]. Inflammation, 2017, 40(1):1-12.
[18]
Zhang Z,Liang Z,Li H, et al. Perfluorocarbon reduces cell damage from blast injury by inhibiting signal paths of NF-κB, MAPK and Bcl-2/Bax signaling pathway in A549 cells[J]. PLoS One, 2017, 12(3): e0173884.
[19]
Wei HY,Ma X. Tamoxifen reduces infiltration of inflammatory cells, apoptosis and inhibits IKK/NF-kB pathway after spinal cord injury in rats[J]. Neurol Sci, 2014, 35(11):1763-1768.
[1] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[2] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 徐燕群, 李平, 杨兴, 薛慧. 脂多糖通过促进透明质酸受体CD44向核转移介导牙周膜细胞白细胞介素6释放[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 335-344.
[5] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[6] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[7] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[8] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[9] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[10] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[11] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[12] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[13] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要