切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (03) : 160 -165. doi: 10.3877/cma.j.issn.2095-1221.2019.03.006

所属专题: 文献

论著

二氢杨梅素对高糖诱导的H9C2心肌细胞损伤的影响
王蕊1,(), 郝翠君1, 周金才1, 张占帅1, 曹佳1, 袁桂莉1, 石金铮1   
  1. 1. 075000 张家口,河北北方学院附属第一医院心内科
  • 收稿日期:2019-04-01 出版日期:2019-06-01
  • 通信作者: 王蕊
  • 基金资助:
    张家口市科技攻关计划项目(1621077D)

Effect of dihydrobayberry on high glucose-caused injury of H9C2 myocardial cell

Rui Wang1,(), Cuijun Hao1, Jincai Zhou1, Zhanshuai Zhang1, Jia Cao1, Guili Yuan1, Jinzheng Shi1   

  1. 1. Department of Cardiology, the First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
  • Received:2019-04-01 Published:2019-06-01
  • Corresponding author: Rui Wang
  • About author:
    Corresponding author: Wang Rui, Email:
引用本文:

王蕊, 郝翠君, 周金才, 张占帅, 曹佳, 袁桂莉, 石金铮. 二氢杨梅素对高糖诱导的H9C2心肌细胞损伤的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2019, 09(03): 160-165.

Rui Wang, Cuijun Hao, Jincai Zhou, Zhanshuai Zhang, Jia Cao, Guili Yuan, Jinzheng Shi. Effect of dihydrobayberry on high glucose-caused injury of H9C2 myocardial cell[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(03): 160-165.

目的

探讨二氢杨梅素(DHM)对高糖(HG)诱导的心肌细胞H9C2损伤的影响及机制。

方法

细胞处理分为对照组、35 mmol/L HG组、35mmol/L HG+50 μmol/L DHM组及50 μmol/L DHM组。CCK-8法检测细胞活力,化学比色法检测丙二醛(MDA)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)水平,流式细胞术检测ROS水平;荧光定量PCR法及Elisa法分别检测TNFα、IL1β、IL6 mRNA和含量,Western Blotting检测p-IκBα、IκBα蛋白及核蛋白NF-κB p65的表达水平。采用单因素方差分析进行组间比较。

结果

对照组、35mmol/?L HG组、35?mmol/L HG+50?μmol/L DHM组、35?mmol/L HG+100?μmol/L DHM组的细胞活力分别是(100±0.00) ﹪、(52.23±5.69) ﹪、(74.58±6.12) ﹪和(86.04±3.76)﹪,差异具有统计学意义(F?= 40.61,P?< 0.01)。对照组、35?mmol/L HG组和35?mmol/L HG+100?μmol/L DHM组的MDA和ROS水平,SOD和CAT活性分别是(0.44±0.06)?nmol/?ml,(2.33±0.40)?nmol/?ml,(1.48±0.41)?nmol/ml、(156.0±9.00)U/ml,(325.3±10.69)U/ml,(244.0±9.54)?U/ml,(10.62± 1.59)?U/?ml,(5.18±0.34)U/ml,(7.75±0.53)U/ml,(11.31±0.98)?U/ml,(5.20±1.12)?U/?ml和(8.06±0.66)U/ml,差异具有统计学意义(F?= 30.34,29.75,14.72,P均< 0.01)。DHM预处理可明显拮抗HG对H9C2心肌细胞TNFα、IL1β和IL6 mRNA及含量的上调作用,差异存在统计学意义(P?均< 0.01)。DHM可抑制HG对H9C2心肌细胞p-IκBα/?IκBα蛋白和核蛋白NF-κB p65表达的增加作用,差异存在统计学意义(P均< 0.01)。

结论

DHM可拮抗HG诱导的H9C2心肌细胞损伤,这可能与其抑制NF-κB信号通路有关。

Objective

To investigate the influence of dihydrobayberry (DHM) on high glucose (HG) -induced cardiomyocytes H9c2 cells damage and its poteintial mechanism.

Methods

Cells were divided into the following groups: control group, 35 mmol/L HG group, 35?mmol/L HG+50?μmol/L DHM group and 50?μmol/L DHM group. CCk-8 assay was used to detect cell viability. The levels of malondialdehyde (MDA) , superoxide dismutase (SOD) and catalase (CAT) were determined by chemical colorimetry. ROS levels were measured by flow cytometry. TNFα, IL1β and IL6 mRNA expression and contents were determined by fluorescence quantitative PCR and Elisa assays respectively. The expression levels of p-IκBα and IκBα proteins, and nucleoprotein NF-κB p65 were detected by Western Blot. Univariate analysis of variance was used for comparison between groups.

Results

Pretreatment with 50 and 100?μmol/L DHM significantly inhibited the reduced cell viability of H9C2 myocardial cells caused by 35?mmol/L HG: The cell viability of the control group, 35?mmol/L HG group, 35?mmol/L HG+50?μmol/L DHM group, 35?mmol/L HG+100?μmol/L DHM group were (100±0.00) ﹪, (52.23±5.69) ﹪, (74.58±6.12) ﹪ and (86.04±3.76) ﹪, respectively (F?= 40.61, P < 0.001) . We also found that pretreatment with DHM (50?μmol/L) significantly inhibited the enhanced MDA and ROS levels, and decreased SOD and CAT activity of H9C2 myocardial cells induced by HG (35?mmol/?L) . The MDA level, SOD and CAT activity of the control group, HG group and HG+ DHM group were (0.44±0.06) ?nmol/?ml, (2.33±0.40) nmol/ml, (1.48±0.41) nmol/ml, (156.00±9.00) U/ml, (325.3±10.69) U/?ml, (244.0±9.54) U/ml, (10.62±1.59) U/ml, (5.18±0.34) U/ml, (7.75±0.53) ?U/?ml and (11.31±0.98) ?U/?ml , (5.20±1.12) U/ml, (8.06±0.66) U/ml, respectively. (F?= 30.34, 29.75, 14.72, P?all < 0.001) . Pretreatment with DHM significantly inhibited the increased expression levels of TNFα, IL1β and IL6 mRNA and their contents caused by HG in H9C2 myocardial cells (P all < 0.001) . DHM significantly inhibited the increased expression of p-IκBα/IκBα and nucleoprotein NF-κB p65 in H9C2 myocardial cells caused by HG (P all < 0.001) .

Conclusion

DHM can antagonize HG-induced H9C2 myocardial cell injury, which may be related to its inhibition of NF-κB signaling pathway.

表1 DHM对HG处理的H9C2心肌细胞活力的影响(±s
表2 DHM对HG处理的H9C2心肌细胞氧化应激的影响(±s
表3 DHM对HG处理的H9C2心肌细胞炎症的影响(±s
图1 DHM对HG处理的H9C2心肌细胞NF-κB信号通路的影响
图2 H9C2心肌细胞NF-κB信号通路相关蛋白灰度值的分析结果
[9]
Zhou MQ,Shao L,Wu J, et al. Dihydromyricetin protects against lipopolysaccharideinduced cardiomyocyte injury through the tolllike receptor4/nuclear factorκB pathway[J]. Mol Med Rep, 2017, 16(6):8983-8988.
[10]
Wu B,Lin J,Luo J, et al. Dihydromyricetin protects against diabetic cardiomyopathy in streptozotocin-induced diabetic mice[J]. Biomed Res Int, 2017, 2017:3764370.
[11]
Ogurtsova K,da Rocha Fernandes JD,Huang Y, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040[J]. Diabetes Res Clin Pract, 2017, 128:40-50.
[12]
Bugger H,Bode C. The vulnerable myocardium[J]. Hamostaseologie, 2015, 35(1):17-24.
[13]
Falcão-Pires I,Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment[J]. Heart Fail Rev, 2012,17(3):325-344.
[14]
Liu L,Yin X,Wang X, et al. Determination of dihydromyricetin in rat plasma by LC-MS/MS and its application to a pharmacokinetic study[J]. Pharm Biol, 2017, 55(1):657-662.
[15]
Wold LE,Ren J. Streptozotocin directly impairs cardiac contractile function in isolated ventricular myocytes via a p38 map kinase-dependent oxidative stress mechanism[J]. Biochem Biophys Res Commun, 2004, 318(4):1066-1071.
[16]
Koncsos G,Varga ZV,Baranyai T, et al. Diastolic dysfunction in prediabetic male rats: Role of mitochondrial oxidative stress[J]. Am J Physiol Heart Circ Physiol, 2016, 311(4):H927-H943.
[17]
Liang W,Chen M,Zheng D, et al. A novel damage mechanism: Contribution of the interaction between necroptosis and ROS to high glucose-induced injury and inflammation in H9c2 cardiac cells[J]. Int J Mol Med, 2017, 40(1):201-208.
[18]
Domingueti CP,Dusse LM,Carvalho Md, et al. Diabetes mellitus:The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications[J]. J Diabetes Complications, 2016, 30(4):738-745.
[19]
Fei Y,Sun L,Yuan C, et al. CFTR ameliorates high glucose-induced oxidative stress and inflammation by mediating the NF-κB and MAPK signaling pathways in endothelial cells[J]. Int J Mol Med, 2018, 41(6):3501-3508.
[20]
Safi SZ,Batumalaie K,Qvist R, et al. Gelam honey attenuates the oxidative stress-induced inflammatory pathways in pancreatic hamster cells[J]. Evid Based Complement Alternat Med, 2016, 2016:5843615.
[21]
Liang W,Chen M,Zheng D, et al. The opening of ATP-Sensitive K+ channels protects H9c2 cardiac cells against the high glucose-induced injury and inflammation by inhibiting the ROS-TLR4-Necroptosis pathway[J]. Cell Physiol Biochem, 2017, 41(3):1020-1034.
[22]
Nishikido T,Oyama J,Shiraki A, et al. Deletion of apoptosis inhibitor of macrophage (AIM)/CD5L attenuates the inflammatory response and infarct size in acute myocardial infarction[J]. J Am Heart Assoc, 2016, 5(4):e002863.
[23]
Li X,Zhou J,Huang K. Inhibition of the lncrna mirt1 attenuates acute myocardial infarction by suppressing NF-κB activation[J]. Cell Physiol Biochem, 2017, 42(3):1153-1164.
[1]
Jia G,Hill MA,Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity[J]. Circ Res, 2018, 122(4):624-638.
[2]
Rubler S,Dlugash J,Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis[J]. Am J Cardiol, 1972,30(6):595-602.
[3]
Marwick TH,Ritchie R,Shaw JE, et al. Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy[J]. J Am Coll Cardiol, 2018, 71(3):339-351.
[4]
Boudina S,Abel ED. Diabetic cardiomyopathy revisited[J]. Circulation, 2007, 115(25):3213-3223.
[5]
Liu L,Wan J,Lang H, et al. Dihydromyricetin delays the onset of hyperglycemia and ameliorates insulin resistance without excessive weight gain in Zucker diabetic fatty rats[J]. Mol Cell Endocrinol, 2017, 439:105-115.
[6]
Fan KJ,Yang B,Liu Y, et al. Inhibition of human lung cancer proliferation through targeting stromal fibroblasts by dihydromyricetin[J]. Mol Med Rep, 2017,16(6):9758-9762.
[7]
Chu J,Wang X,Bi H, et al. Dihydromyricetin relieves rheumatoid arthritis symptoms and suppresses expression of pro-inflammatory cytokines via the activation of Nrf2 pathway in rheumatoid arthritis model[J]. Int Immunopharmacol, 2018,59:174-180.
[8]
Jiang B,Le L,Pan H, et al. Dihydromyricetin ameliorates the oxidative stress response induced by methylglyoxal via the AMPK/GLUT4 signaling pathway in PC12 cells[J]. Brain Res Bull, 2014,109:117-126.
[24]
Xu W,Chen J,Lin J, et al. Exogenous H2S protects H9c2 cardiac cells against high glucose-induced injury and inflammation by inhibiting the activation of the NF-κB and IL-1β pathways[J]. Int J Mol Med, 2015, 35(1):177-186.
[25]
Tang N,Ma J,Wang KS, et al. Dihydromyricetin suppresses TNF-α-induced NF-κB activation and target gene expression[J]. Mol Cell Biochem, 2016, 422(1-2):11-20.
[1] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[2] 刘炯, 彭乐, 马伟, 江斌. 鞘外解剖肝蒂技术治疗肝内胆管细胞癌的疗效评估[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 373-376.
[3] 王东阳, 林琳, 娄熙彬. SII对局部进展期胃癌nCRT+腹腔镜胃癌根治术后并发症及预后的影响研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(03): 315-318.
[4] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[5] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[6] 张璇, 高杨, 房雅君, 姚艳玲. 保护性机械通气在肺癌胸腔镜肺段切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 563-567.
[7] 殷国青, 曾莉, 贺斌峰, 孙芬芬. Rab26负性调控Nrf2增强肺癌耐药细胞对奥希替尼的敏感性[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 349-355.
[8] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[9] 李佳曦, 刘子源, 李学民. 二甲双胍对年龄相关性白内障影响的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 252-256.
[10] 王子琪, 李萍, 蔡标, 杨秀敏. 雌激素在糖尿病性视网膜病变中作用机制的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(03): 187-192.
[11] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[12] 冯铭, 孙洪涛. 动脉瘤性蛛网膜下腔出血的颅内压监测与管理[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 248-253.
[13] 张晟豪, 周杰, 姚鹏飞, 李长栋, 屈晓东, 南亚强, 曹丽. 雷公藤红素在创伤性脑损伤后继发性损伤中的作用及机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 132-140.
[14] 陈雪飞, 卜雄建, 张春良. 神经内镜下经鼻蝶窦扩大鞍底入路颅咽管瘤切除术的疗效分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 160-165.
[15] 买买提·依斯热依力, 尹强, 尹海龙, 李治建, 董雨微, 王永康, 克力木·阿不都热依木, 阿吉艾克拜尔·艾萨. 罗乐胃蜜膏抑制酸刺激诱导食管上皮细胞炎症发生的机制研究[J/OL]. 中华胃食管反流病电子杂志, 2024, 11(03): 137-142.
阅读次数
全文


摘要