切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (03) : 154 -159. doi: 10.3877/cma.j.issn.2095-1221.2019.03.005

所属专题: 文献

论著

ATG12对缺氧缺血性脑病小鼠神经细胞凋亡和自噬的影响
李浩东1, 徐虹1, 范永新1, 刘猛1, 朱月敏1, 马俊平1, 栾松1,()   
  1. 1. 072750 涿州,河北省涿州市医院神经内科
  • 收稿日期:2019-04-01 出版日期:2019-06-01
  • 通信作者: 栾松
  • 基金资助:
    保定市科技计划项目(17ZF233)

Effect of ATG12 gene on apoptosis and autophagy in mice with hypoxic-ischemic encephalopathy

Haodong Li1, Hong Xu1, Yongxin Fan1, Meng Liu1, Yuemin Zhu1, Junping Ma1, Song Luan1,()   

  1. 1. Department of Neurosurgery, Zhuozhou City Hospital, Zhuozhou 072750, China
  • Received:2019-04-01 Published:2019-06-01
  • Corresponding author: Song Luan
  • About author:
    Corresponding author: Luan Song, Email:
引用本文:

李浩东, 徐虹, 范永新, 刘猛, 朱月敏, 马俊平, 栾松. ATG12对缺氧缺血性脑病小鼠神经细胞凋亡和自噬的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2019, 09(03): 154-159.

Haodong Li, Hong Xu, Yongxin Fan, Meng Liu, Yuemin Zhu, Junping Ma, Song Luan. Effect of ATG12 gene on apoptosis and autophagy in mice with hypoxic-ischemic encephalopathy[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(03): 154-159.

目的

探讨自噬相关蛋白12 (ATG12)对缺氧缺血性脑病(HIE)小鼠细胞凋亡和自噬的影响及分子机制。

方法

通过尾静脉注射腺相关病毒构建ATG12低表达小鼠模型,将40只小鼠分为假手术组、HIE模型组、对照病毒模型(NC-HIE)组和ATG低表达病毒模型(ATG12 shRNA-HIE)组,HIE模型组小鼠左侧颈动脉结扎后低氧(8﹪氧气+92﹪氮气)处理2.5?h,假手术组不予结扎和低氧处理。缺氧处理后,荧光定量PCR检测脑组织ATG12 mRNA表达水平。比色法检测各组小鼠大脑神经细胞SOD和MDA水平;通过Tunel法检测各组小鼠大脑神经细胞凋亡水平;通过Western Blot检测各组小鼠大脑神经细胞LC3A/B、ATG12和SQSTM1/?p62蛋白表达水平。采用t检验和单因素方差分析对实验数据进行统计分析。

结果

与假手术组小鼠脑组织ATG12 mRNA水平(1.00±0.14)相比,HIE模型组小鼠脑组织ATG12 mRNA水平(5.23±0.37)显著升高(t?= 33.60,P?< 0.01);与假手术组小鼠脑组织超氧化物歧化酶(SOD)活性[(103.60±4.84)?U/?mgprot]和丙二醛(MDA)含量[(42.40±3.17)?μmol/?mgprot]比较,HIE模型组小鼠脑组织SOD活性[(62.60±3.44)?U/?mgprot]显著降低,MDA含量[(83.80±4.39)?μmol/?mgprot]显著升高,与NC-HIE组小鼠脑组织SOD活性[(61.20±4.39)?U/mgprot]和MDA含量[(85.20± 2.70)?μmol/?mgprot]比较,ATG12 shRNA-?HIE组小鼠脑组织SOD活性[(93.80± 5.43)?U/?mgprot]显著升高,MDA含量[(49.20±3.49)?μmol/mgprot]显著降低,差异具有统计学意义(F?= 222.7,P?< 0.01;F?=?415.8,P?<?0.01)。Tunel结果显示,与假手术组比较,HIE模型组小鼠脑组织凋亡程度升高,与NC-HIE组比较,ATG12 shRNA-HIE组小鼠脑组织凋亡程度降低。Western Blot结果显示,与假手术组小鼠脑组织ATG12、LC3A/B和SQSTM1/?p62蛋白(0.14±0.03,0.13±0.02,0.53±0.03)比较,HIE模型组小鼠脑组织ATG12和LC3A/?B蛋白表达(0.49±0.04,0.45±0.03)显著升高,SQSTM1/p62蛋白表达(0.24±0.03)显著降低,与NC-?HIE组小鼠脑组织ATG12、LC3A/B和SQSTM1/p62蛋白(0.46±0.03,0.45±0.03,0.25±0.03)比较,ATG12 shRNA-HIE组小鼠脑组织ATG12和LC3A/B蛋白表达(0.13±0.02,0.16±0.03)显著降低,SQSTM1/p62蛋白表达(0.53±0.04)显著升高,差异具有统计学意义(F?= 432.9,P?< 0.01;F?= 437.5,P?< 0.01;F?= 301.9,P?< 0.01)。

结论

降低ATG12表达能够抑制小鼠大脑神经细胞氧化应激,缓解HIE小鼠大脑神经细胞凋亡和自噬水平,抑制脑损伤。

Objective

To investigate the effect of autophagy-related protein 12 (ATG12) on apoptosis and autophagy in mice with hypoxic-ischemic encephalopathy (HIE) and its molecular mechanism.

Methods

The ATG12 low expression mouse model was constructed by injecting adeno-?associated virus (AAV) into the tail vein. Forty mice were divided into a sham operation group, HIE model group, negative control virus HIE model (NC-HIE) group and ATG low expression virus HIE model (ATG12 shRNA-HIE) group. The mice in the HIE model group were treated with hypoxia (8﹪ oxygen + 92﹪ nitrogen) for 2.5?h after ligation of the left carotid artery. The mice in the sham operation group were not treated with ligation and hypoxia. After hypoxia and hypoxia treatment, the expression level of ATG12 mRNA in the brain tissues was detected by real-time PCR. The levels of SOD and MDA in the brain tissues of each group were detected. The apoptosis level of the brain tissues was detected by Tunel method. The expressions of LC3A/B, ATG12 and SQSTM1/?p62 protein in the brain tissues of each group were detected by Western Blot. Statistical analysis of experimental data was performed by t-test and one-way ANOVA.

Results

Compared with the sham operation group (1.00±0.14) , the ATG12 mRNA level (5.23±0.37) in the brain of the HIE model group was significantly increased (t?= 33.60, P < 0.01) . Compared with the sham operation group[ (103.60±4.84) ?U/mgprot, (42.40±3.17) ?μmol/?mgprot], the SOD activity[ (62.60±3.44) ?U/mgprot] in the brain tissues of the HIE model group was significantly decreased, and the MDA content[ (83.80±4.39) ?μmol/mgprot]was significantly increased. Compared with the NC-HIE group[ (61.20±4.39) ?U/mgprot, (85.20±2.70) ?μmol/mgprot], the SOD activity[ (93.80±5.43) ?U/mgprot] in the brain tissues of the ATG12 shRNA-HIE group was significantly increased, and the MDA content[ (49.20±3.49) ?μmol/mgprot] was significantly decreased, and the differences were statistically significant (F?= 222.7, P?< 0.01; F?= 415.8, P < 0.01) . The results of Tunel showed that compared with the sham operation group, the level of brain tissues apoptosis in the HIE model group was significantly higher. Compared with the NC-HIE group, the brain tissues apoptosis level of the ATG12 shRNA-HIE group was significantly lower. Western Blot results showed that compared with the sham operation group (0.14±0.03, 0.13±0.02, 0.53±0.03) , the expression of ATG12 and LC3A/B protein (0.49±0.04, 0.45±0.03) in the brain of the HIE model group was significantly increased, and the expression of SQSTM1/p62 protein (0.24±0.03) was significantly decreased. Compared with NC-HIE group (0.46±0.03, 0.45±0.03, 0.25±0.03) , the expression of ATG12 and LC3A/B protein (0.13±0.02, 0.16±0.03) in the rat brain tissues was significantly decreased, and the expression of SQSTM1/p62 protein (0.53±0.04) was significantly increased, the difference was statistically significant (F?= 432.9, P?< 0.01; F?= 437.5, P?< 0.01; F?= 301.9, P?< 0.01) .

Conclusion

Inhibition of ATG12 expression can inhibit oxidative stress in mice, alleviate brain tissue apoptosis and autophagy levels in HIE mice, and inhibit brain damage.

表1 荧光定量PCR引物序列
表2 QRT-PCR法检测不同组别小鼠脑组织中ATG12 mRNA相对表达量(±s
图1 光学显微镜观察检测ATG12在HIE小鼠中高表达(免疫组化染色,×200)
表3 分光光度法检测ATG12对不同处理组小鼠脑组织SOD和MDA含量的影响(±s
图2 激光共聚焦显微镜下观察ATG12对HIE小鼠脑组织凋亡的影响(Tunel染色,×200)
表4 Western Blot检测不同处理组小鼠脑组织蛋白相对表达量(±s
图3 ATG12对HIE小鼠脑组织自噬的影响
[1]
Lopes-Pereira J,Costa A,Ayres-De-Campos D, et al. Computerized analysis of cardiotocograms and ST signals is associated with significant reductions in hypoxic-ischemic encephalopathy and cesarean delivery: an observational study in 38,466 deliveries[J]. Am J Obstet Gynecol, 2019, 220(3):269.e1-269.e8.
[2]
Natarajan G,Mathur A,Zaniletti I, et al. Withdrawal of life-support in neonatal hypoxic-ischemic encephalopathy[J]. Pediatr Neurol, 2019, 91:20-26.
[3]
Cinelli D,Lacroix C,Myers KA. Rhythmic sawtooth electroencephalograph waveforms in neonatal Hypoxic-Ischemic/hypoglycemic encephalopathy[J]. Pediatr Neurol, 2019, 91:70-71.
[4]
Lemyre B,Chau V. Hypothermia for newborns with hypoxic-ischemic encephalopathy[J]. Paediatr Child Health, 2018, 23(4):285-291.
[5]
Molloy EJ,Bearer C. Neonatal encephalopathy versus hypoxic-ischemic encephalopathy[J]. Pediatr Res, 2018, 84(5):574.
[6]
Dixon BJ,Reis C,Ho WM, et al. Neuroprotective strategies after neonatal hypoxic ischemic encephalopathy[J]. Int J Mol Sci, 2015, 16(9):22368-22401.
[7]
Cui D,Sun D,Wang X, et al. Impaired autophagosome clearance contributes to neuronal death in a Piglet model of neonatal hypoxic-ischemic encephalopathy[J]. Cell Death Dis, 2017, 8(7):e2919.
[8]
Feng Y,Gao J,Cui Y, et al. Neuroprotective effects of resatorvid against traumatic brain injury in rat: involvement of neuronal autophagy and TLR4 signaling pathway[J]. Cell Mol Neurobiol, 2016, 37(1):155-168.
[9]
Blanco S,Hernández R,Franchelli G, et al. Melatonin influences NO/NOS pathway and reduces oxidative and nitrosative stress in a model of hypoxic-ischemic brain damage[J]. Nitric Oxide, 2017, 62:32-43.
[10]
Neri M,Büttner A,Fineschi V. Brain injury due to mechanical trauma and Ischemic-Hypoxic insult: biomarkers of brain injury and oxidative stress[J]. Oxid Med Cell Longev, 2017:8923472.
[11]
Dai C,Liu Y,Dong Z. Tanshinone I alleviates motor and cognitive impairments via suppressing oxidative stress in the neonatal rats after hypoxic-ischemic brain damage[J]. Mol Brain, 2017, 10(1):52.
[12]
Ge XH,Shao L,Zhu GJ. Oxymatrine attenuates brain hypoxic-ischemic injury from apoptosis and oxidative stress: role of p-Akt/GSK3β/HO-1/Nrf-2 signaling pathway[J]. Metab Brain Dis, 2018, 33(6):1869-1875.
[13]
Yoo BH,Khan IA,Koomson A, et al. Oncogenic RAS-induced downregulation of ATG12 is required for survival of malignant intestinal epithelial cells[J]. Autophagy, 2018, 14(1):134-151.
[14]
Fan X,Han S,Yan D, et al. Foot-and-mouth disease virus infection suppresses autophagy and NF-кB antiviral responses via degradation of ATG5-ATG12 by 3Cpro[J]. Cell Death Dis, 2017, 8(1):e2561.
[15]
Dixit NS,Shravage BV,Ghaskadbi S. Identification and characterization of the autophagy-related genes Atg12 and Atg5 in hydra[J]. Int J Dev Biol, 2017, 61(6/7):389-395.
[16]
Li C,Mo Z,Lei J, et al. Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway[J]. Int J Biochem Cell Biol, 2018, 99:169-177.
[17]
Zhao F,Qu Y,Zhu J, et al. miR-30d-5p plays an important role in autophagy and apoptosis in developing rat brains after Hypoxic-Ischemic injury[J]. J Neuropathol Exp Neurol, 2017, 76(8):709-719.
[18]
Hu JL,He GY,Lan XL, et al. Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer[J]. Oncogenesis, 2018, 7(2):16.
[19]
Li Y,Huang J,Pang S, et al. Novel and functional ATG12 gene variants in sporadic Parkinson's disease [J]. Neurosci Lett, 2017, 643:22-26.
[20]
Li YQ,Fu S,Wang L, et al. [Autophagy and hypoxic ischemic brain injuries][J]. Sheng Li Xue Bao, 2017, 69(3):316-324.
[21]
Berezowska S,Galván JA. Immunohistochemical detection of the autophagy markers LC3 and p62/SQSTM1 in formalin-fixed and paraffin-embedded tissue[J]. Methods Mol Biol, 2017, 1560:189-194.
[22]
Wang S,Xue H,Xu Y, et al. Sevoflurane postconditioning inhibits autophagy through activation of the extracellular Signal-Regulated kinase cascade, alleviating Hypoxic-Ischemic brain injury in neonatal rats[J]. Neurochem Res, 2019, 44(2):347-356.
[1] 许彬, 王丽, 陈瑞, 沈奕, 陆件. 瞬时受体电位粘脂素1介导细胞自噬在远端缺血后处理保护大鼠脑缺血-再灌注损伤中的作用研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 180-187.
[2] 鲁梦远, 赵学刚, 郝嘉文, 盖晨阳, 李聪颖, 张晶, 张庆富. 高压电烧伤大鼠肝脏氧化应激损伤及灯盏花素的干预作用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(02): 113-118.
[3] 杨文飞, 郝嘉文, 鲁梦远, 赵学刚, 李聪颖, 盖晨阳, 张晶, 张庆富. 高压电烧伤对大鼠心肌氧化应激的影响及N-乙酰半胱氨酸的干预作用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(02): 106-112.
[4] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[5] 张璇, 高杨, 房雅君, 姚艳玲. 保护性机械通气在肺癌胸腔镜肺段切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 563-567.
[6] 殷国青, 曾莉, 贺斌峰, 孙芬芬. Rab26负性调控Nrf2增强肺癌耐药细胞对奥希替尼的敏感性[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 349-355.
[7] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[8] 裴捷, 毛本亮, 郝定盈, 苑伟, 颜勇, 吴帆, 王鹏珍, 王百林. 槲皮素调控肝缺血-再灌注损伤的研究进展及应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 244-249.
[9] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[10] 李佳曦, 刘子源, 李学民. 二甲双胍对年龄相关性白内障影响的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 252-256.
[11] 王子琪, 李萍, 蔡标, 杨秀敏. 雌激素在糖尿病性视网膜病变中作用机制的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(03): 187-192.
[12] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[13] 冯铭, 孙洪涛. 动脉瘤性蛛网膜下腔出血的颅内压监测与管理[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 248-253.
[14] 张晟豪, 周杰, 姚鹏飞, 李长栋, 屈晓东, 南亚强, 曹丽. 雷公藤红素在创伤性脑损伤后继发性损伤中的作用及机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 132-140.
[15] 买买提·依斯热依力, 尹强, 尹海龙, 李治建, 董雨微, 王永康, 克力木·阿不都热依木, 阿吉艾克拜尔·艾萨. 罗乐胃蜜膏抑制酸刺激诱导食管上皮细胞炎症发生的机制研究[J/OL]. 中华胃食管反流病电子杂志, 2024, 11(03): 137-142.
阅读次数
全文


摘要