切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (06) : 372 -377. doi: 10.3877/cma.j.issn.2095-1221.2021.06.008

综述

间充质干细胞球形体培养的研究进展
梁婷婷1, 张世昌1,()   
  1. 1. 210029 南京医科大学第一附属医院检验学部
  • 收稿日期:2021-07-30 出版日期:2021-12-01
  • 通信作者: 张世昌

Progress of mesenchymal stem cells by spheroid culture

Tingting Liang1, Shichang Zhang1,()   

  1. 1. Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
  • Received:2021-07-30 Published:2021-12-01
  • Corresponding author: Shichang Zhang
引用本文:

梁婷婷, 张世昌. 间充质干细胞球形体培养的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 372-377.

Tingting Liang, Shichang Zhang. Progress of mesenchymal stem cells by spheroid culture[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(06): 372-377.

间充质干细胞(MSCs)是一类具有自我更新和多向分化潜能的细胞,在组织工程和再生医学应用中具有重要的影响力。然而,MSCs的临床应用面临许多挑战,如细胞体内移植后存活率低,以及传统的培养模式导致MSCs特征衰减等。球形体培养是一种典型的无支架三维细胞培养系统,利用了多种类型的细胞具有天然自我聚集的优势,能更好地模拟MSCs在体内生长的微环境。国内外学者在MSCs球形体培养方面进行了广泛探索,取得了较大进展。大量研究表明,球形体培养可维持MSCs的特征,提升MSCs在临床应用方面的治疗潜能,在临床医学领域具有广泛的应用前景。本文将对球形体培养MSCs的研究进展进行综述。

Mesenchymal stem cells (MSCs) play an important role in tissue engineering and regenerative medicine applications for their self-renewal ability and multidirectional differentiation potential. However, there are many difficulties in the clinical application of MSCs, such as the low survival rate after in vivo transplantation, and the attenuation of MSCs characteristics in the traditional culture. Spheroid culture is a scaffold-free-mediated three-dimensional (3D) culture system. Multiple types of cells have the advantage of natural self aggregation tendency, which can provide a preferable physiological microenvironment for cells growth in vivo. Scholars have made related researches and progress. Studies have shown that spheroid culture can maintain properties of MSCs and explore its therapeutic potential in clinical applications. Therefore, spheroid culture is promising in medicine applications, and in this paper the progress of MSCs by spheroid culture will be reviewed.

表1 细胞球形体的制备方式、原理及优缺点
图1 间充质干细胞球形体形成过程
1
Liu Q, Huang Q, Wu H, et al. Characteristics and therapeutic potential of human amnion-derived stem cells[J]. Int J Mol Sci, 2021, 22(2):970.
2
Teixeira F, Carvalho M, Sousa N, et al. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration?[J]. Cell Mol Life Sci, 2013, 70(20):3871-3882.
3
Li F, Truong V, Thissen H, et al. Microfluidic encapsulation of human mesenchymal stem cells for articular cartilage tissue regeneration[J]. ACS Appl Mater Interfaces, 2017, 9(10):8589-8601.
4
Turinetto V, Vitale E, Giachino C. Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy[J]. Int J Mol Sci, 2016, 17(7):1164.
5
Yan X, van den Beucken J, Both S, et al. Biomaterial strategies for stem cell maintenance during in vitro expansion[J]. Tissue Eng Part B Rev, 2014, 20(4):340-354.
6
Panek M, Grabacka M, Pierzchalska M. The formation of intestinal organoids in a hanging drop culture[J]. Cytotechnology, 2018, 70(3): 1085-1095.
7
Bartosh T, Ylostalo J. Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging-drop culture technique[J]. Curr Protoc Stem Cell Biol, 2014, 28:Unit 2B.6.doi: 10.1002/9780470151808.sc02b06s28.
8
Bartosh T, Ylöstalo J, Mohammadipoor A, et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties[J]. Proc Natl Acad Sci U S A, 2010, 107(31):13724-13729.
9
Costăchel O, Fadei L, Badea E. Tumor cell suspension culture on non adhesive substratum[J]. Z Krebsforsch, 1969, 72(1):24-31.
10
Sackmann E, Smith A. Physics of cell adhesion: some lessons from cell-mimetic systems[J]. Soft matter, 2014, 10(11):1644-1659.
11
Carvalho M, Costa E, Correia I. Assembly of breast cancer heterotypic spheroids on hyaluronic acid coated surfaces[J]. Biotechnol Prog, 2017, 33(5):1346-1357.
12
Iwashita M, Ohta H, Fujisawa T, et al. Brain-stiffness-mimicking tilapia collagen gel promotes the induction of dorsal cortical neurons from human pluripotent stem cells[J]. Sci Rep, 2019, 9(1):3068.
13
Kim S, Kim E, Yamamoto M, et al. Engineering multi-cellular spheroids for tissue engineering and regenerative medicine[J]. Adv Healthc Mater, 2020:e2000608. doi: 10.1002/adhm.202000608.
14
Zhao N, Coyne J, Abune L, et al. Exogenous signaling molecules released from aptamer-functionalized hydrogels promote the survival of mesenchymal stem cell spheroids[J]. ACS Appl Mater Interfaces, 2020, 12(22):24599-24610.
15
Kim G, Jung Y, Cho K, et al. Thermoresponsive poly (N-isopropylacrylamide) hydrogel substrates micropatterned with poly (ethylene glycol) hydrogel for adipose mesenchymal stem cell spheroid formation and retrieval[J]. Mater Sci Eng C Mater Biol Appl, 2020, 115: 111128.
16
Li Y, Kumacheva E. Hydrogel microenvironments for cancer spheroid growth and drug screening[J]. Sci Adv, 2018, 4(4):eaas8998.doi: 10.1126/sciadv.aas8998.
17
Mattix B, Olsen T, Gu Y, et al. Biological magnetic cellular spheroids as building blocks for tissue engineering[J]. Acta Biomater, 2014, 10(2):623-629.
18
Labusca L, Herea D, Radu E, et al. Human adipose derived stem cells and osteoblasts interaction with Fe-Cr-Nb-B magnetic nanoparticles[J]. J Nanosci Nanotechnol, 2018, 18(7):5143-5153.
19
Lewis N, Lewis E, Mullin M, et al. Magnetically levitated mesenchymal stem cell spheroids cultured with a collagen gel maintain phenotype and quiescence[J]. J Tissue Eng, 2017, 8:2041731417704428. doi: 10.1177/2041731417704428.
20
Achilli T, Meyer J, Morgan J. Advances in the formation, use and understanding of multi-cellular spheroids[J]. Expert Opin Biol Ther, 2012, 12(10):1347-1360.
21
Zhang S, Zhang B, Chen X, et al. Three-dimensional culture in a microgravity bioreactor improves the engraftment efficiency of hepatic tissue constructs in mice[J]. J Mater Sci Mater Med, 2014, 25(12):2699-2709.
22
Si A, Wang L, Miao K, et al. miR-219 regulates liver cancer stem cell expansion via E-cadherin pathway[J]. Cell cycle, 2019, 18(24):3550-3561.
23
Lee B, Kim M, Lee J, et al. Modulation of Huh7.5 spheroid formation and functionality using modified PEG-based hydrogels of different stiffness[J]. PLoS One, 2015, 10(2):e0118123. doi: 10.1371/journal.pone.0118123.
24
Tsai A, Liu Y, Yuan X, et al. Compaction, fusion, and functional activation of three-dimensional human mesenchymal stem cell aggregate[J]. Tissue Eng Part A, 2015, 21(9-10):1705-1719.
25
Cui X, Hartanto Y, Zhang H. Advances in multicellular spheroids formation[J]. J R Soc Interface, 2017, 14(127):20160877. doi: 10.1098/rsif.2016.0877.
26
Zhang Y, Mao H, Gao C, et al. Enhanced biological functions of human mesenchymal stem-cell aggregates incorporating E-cadherin-modified plga microparticles[J]. Adv Healthc Mater, 2016, 5(15):1949-1959.
27
Lee E, Park S, Kang S, et al. Spherical bullet formation via E-cadherin promotes therapeutic potency of mesenchymal stem cells derived from human umbilical cord blood for myocardial infarction[J]. Mol Ther, 2012, 20(7):1424-1433.
28
Sen B, Guilluy C, Xie Z, et al. Mechanically induced focal adhesion assembly amplifies anti-adipogenic pathways in mesenchymal stem cells[J]. Stem cells, 2011, 29(11):1829-1836.
29
Zhou Y, Chen H, Li H, et al. 3D culture increases pluripotent gene expression in mesenchymal stem cells through relaxation of cytoskeleton tension[J]. J Cell Mol Med, 2017, 21(6):1073-1084.
30
Cheng N, Chen S, Li J, et al. Short-term spheroid formation enhances the regenerative capacity of adipose-derived stem cells by promoting stemness, angiogenesis, and chemotaxis[J]. Stem Cells Transl Med, 2013, 2(8):584-594.
31
Zhang S, Liu P, Chen L, et al. The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential[J]. Biomaterials, 2015, 41:15-25.
32
Tsai A, Liu Y, Yuan X, et al. Aggregation kinetics of human mesenchymal stem cells under wave motion[J]. Biotechnol J, 2017, 12(5). doi: 10.1002/biot.201600448.
33
Cheng N, Wang S, Young T. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities[J]. Biomaterials, 2012, 33(6):1748-1758.
34
Yeh H, Liu B, Sieber M, et al. Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes[J]. BMC Genomics, 2014, 15(1):10.
35
Miceli V, Pampalone M, Vella S, et al. Comparison of immunosuppressive and angiogenic properties of human amnion-derived mesenchymal stem cells between 2D and 3D culture systems[J]. Stem Cells Int, 2019, 2019:7486279.doi: 10.1155/2019/7486279.
36
Park I, Chung P, Ahn J, et al. Human adipose-derived stem cell spheroid treated with photobiomodulation irradiation accelerates tissue regeneration in mouse model of skin flap ischemia[J]. Lasers Med Sci, 2017, 32(8):1737-1746.
37
Mohammadi Ghahhari N, Maghsood F, Jahandideh S, et al. Secretome of aggregated embryonic stem cell-derived mesenchymal stem cell modulates the release of inflammatory factors in lipopolysaccharide-induced peripheral blood mononuclear cells[J]. Iran Biomed J, 2018, 22(4):237-245.
38
Zimmermann J, McDevitt T. Pre-conditioning mesenchymal stromal cell spheroids for immunomodulatory paracrine factor secretion[J]. Cytotherapy, 2014, 16(3):331-345.
39
Domnina A, Novikova P, Obidina J, et al. Human mesenchymal stem cells in spheroids improve fertility in model animals with damaged endometrium[J]. Stem Cell Res Ther, 2018, 9(1):50.
40
Domnina A, Ivanova J, Alekseenko L, et al. Three-dimensional compaction switches stress response programs and enhances therapeutic efficacy of endometrial mesenchymal stem/stromal cells[J]. Front Cell Dev Biol, 2020, 8:473. doi: 10.3389/fcell.2020.00473.
41
Keung A, Kumar S, Schaffer D. Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues[J]. Annu Rev Cell Dev Biol, 2010, 26:533-556.
42
Schmitz C, Pepelanova I, Seliktar D, et al. Live reporting for hypoxia: Hypoxia sensor-modified mesenchymal stem cells as in vitro reporters[J]. Biotechnol Bioeng, 2020, 117(11):3265-3276.
43
Cesarz Z, Tamama K. Spheroid Culture of Mesenchymal Stem Cells[J]. Stem Cells Int, 2016, 2016:9176357. doi: 10.1155/2016/9176357.
44
Jiang Z, Li Y, Ji X, et al. Protein profiling identified key chemokines that regulate the maintenance of human pluripotent stem cells[J]. Sci Rep, 2017, 7(1):14510.
45
Guo L, Zhou Y, Wang S, et al. Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) spheroids[J]. J Cell Mol Med, 2014, 18(10):2009-2019.
[1] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[2] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[3] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[4] 周慧宇, 吕定阳, 双卫兵. 联合系统性免疫炎症指数和预后营养指数预测腹腔镜肾切除术后肾癌患者的预后[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 225-231.
[5] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[6] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[7] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[8] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[9] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[10] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[11] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[12] 朱军, 宋家伟, 乔一桓, 郭雅婕, 刘帅, 姜玉, 李纪鹏. M2型巨噬细胞特征基因与结肠癌免疫微环境研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 303-311.
[13] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[14] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
[15] 孙冠超, 万军, 石卉. IgG相关食物不耐受与肠道免疫微环境相关性的研究进展[J/OL]. 中华胃肠内镜电子杂志, 2024, 11(03): 200-203.
阅读次数
全文


摘要