切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (06) : 372 -377. doi: 10.3877/cma.j.issn.2095-1221.2021.06.008

综述

间充质干细胞球形体培养的研究进展
梁婷婷1, 张世昌1,()   
  1. 1. 210029 南京医科大学第一附属医院检验学部
  • 收稿日期:2021-07-30 出版日期:2021-12-01
  • 通信作者: 张世昌

Progress of mesenchymal stem cells by spheroid culture

Tingting Liang1, Shichang Zhang1,()   

  1. 1. Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
  • Received:2021-07-30 Published:2021-12-01
  • Corresponding author: Shichang Zhang
引用本文:

梁婷婷, 张世昌. 间充质干细胞球形体培养的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 372-377.

Tingting Liang, Shichang Zhang. Progress of mesenchymal stem cells by spheroid culture[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(06): 372-377.

间充质干细胞(MSCs)是一类具有自我更新和多向分化潜能的细胞,在组织工程和再生医学应用中具有重要的影响力。然而,MSCs的临床应用面临许多挑战,如细胞体内移植后存活率低,以及传统的培养模式导致MSCs特征衰减等。球形体培养是一种典型的无支架三维细胞培养系统,利用了多种类型的细胞具有天然自我聚集的优势,能更好地模拟MSCs在体内生长的微环境。国内外学者在MSCs球形体培养方面进行了广泛探索,取得了较大进展。大量研究表明,球形体培养可维持MSCs的特征,提升MSCs在临床应用方面的治疗潜能,在临床医学领域具有广泛的应用前景。本文将对球形体培养MSCs的研究进展进行综述。

Mesenchymal stem cells (MSCs) play an important role in tissue engineering and regenerative medicine applications for their self-renewal ability and multidirectional differentiation potential. However, there are many difficulties in the clinical application of MSCs, such as the low survival rate after in vivo transplantation, and the attenuation of MSCs characteristics in the traditional culture. Spheroid culture is a scaffold-free-mediated three-dimensional (3D) culture system. Multiple types of cells have the advantage of natural self aggregation tendency, which can provide a preferable physiological microenvironment for cells growth in vivo. Scholars have made related researches and progress. Studies have shown that spheroid culture can maintain properties of MSCs and explore its therapeutic potential in clinical applications. Therefore, spheroid culture is promising in medicine applications, and in this paper the progress of MSCs by spheroid culture will be reviewed.

表1 细胞球形体的制备方式、原理及优缺点
图1 间充质干细胞球形体形成过程
1
Liu Q, Huang Q, Wu H, et al. Characteristics and therapeutic potential of human amnion-derived stem cells[J]. Int J Mol Sci, 2021, 22(2):970.
2
Teixeira F, Carvalho M, Sousa N, et al. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration?[J]. Cell Mol Life Sci, 2013, 70(20):3871-3882.
3
Li F, Truong V, Thissen H, et al. Microfluidic encapsulation of human mesenchymal stem cells for articular cartilage tissue regeneration[J]. ACS Appl Mater Interfaces, 2017, 9(10):8589-8601.
4
Turinetto V, Vitale E, Giachino C. Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy[J]. Int J Mol Sci, 2016, 17(7):1164.
5
Yan X, van den Beucken J, Both S, et al. Biomaterial strategies for stem cell maintenance during in vitro expansion[J]. Tissue Eng Part B Rev, 2014, 20(4):340-354.
6
Panek M, Grabacka M, Pierzchalska M. The formation of intestinal organoids in a hanging drop culture[J]. Cytotechnology, 2018, 70(3): 1085-1095.
7
Bartosh T, Ylostalo J. Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging-drop culture technique[J]. Curr Protoc Stem Cell Biol, 2014, 28:Unit 2B.6.doi: 10.1002/9780470151808.sc02b06s28.
8
Bartosh T, Ylöstalo J, Mohammadipoor A, et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties[J]. Proc Natl Acad Sci U S A, 2010, 107(31):13724-13729.
9
Costăchel O, Fadei L, Badea E. Tumor cell suspension culture on non adhesive substratum[J]. Z Krebsforsch, 1969, 72(1):24-31.
10
Sackmann E, Smith A. Physics of cell adhesion: some lessons from cell-mimetic systems[J]. Soft matter, 2014, 10(11):1644-1659.
11
Carvalho M, Costa E, Correia I. Assembly of breast cancer heterotypic spheroids on hyaluronic acid coated surfaces[J]. Biotechnol Prog, 2017, 33(5):1346-1357.
12
Iwashita M, Ohta H, Fujisawa T, et al. Brain-stiffness-mimicking tilapia collagen gel promotes the induction of dorsal cortical neurons from human pluripotent stem cells[J]. Sci Rep, 2019, 9(1):3068.
13
Kim S, Kim E, Yamamoto M, et al. Engineering multi-cellular spheroids for tissue engineering and regenerative medicine[J]. Adv Healthc Mater, 2020:e2000608. doi: 10.1002/adhm.202000608.
14
Zhao N, Coyne J, Abune L, et al. Exogenous signaling molecules released from aptamer-functionalized hydrogels promote the survival of mesenchymal stem cell spheroids[J]. ACS Appl Mater Interfaces, 2020, 12(22):24599-24610.
15
Kim G, Jung Y, Cho K, et al. Thermoresponsive poly (N-isopropylacrylamide) hydrogel substrates micropatterned with poly (ethylene glycol) hydrogel for adipose mesenchymal stem cell spheroid formation and retrieval[J]. Mater Sci Eng C Mater Biol Appl, 2020, 115: 111128.
16
Li Y, Kumacheva E. Hydrogel microenvironments for cancer spheroid growth and drug screening[J]. Sci Adv, 2018, 4(4):eaas8998.doi: 10.1126/sciadv.aas8998.
17
Mattix B, Olsen T, Gu Y, et al. Biological magnetic cellular spheroids as building blocks for tissue engineering[J]. Acta Biomater, 2014, 10(2):623-629.
18
Labusca L, Herea D, Radu E, et al. Human adipose derived stem cells and osteoblasts interaction with Fe-Cr-Nb-B magnetic nanoparticles[J]. J Nanosci Nanotechnol, 2018, 18(7):5143-5153.
19
Lewis N, Lewis E, Mullin M, et al. Magnetically levitated mesenchymal stem cell spheroids cultured with a collagen gel maintain phenotype and quiescence[J]. J Tissue Eng, 2017, 8:2041731417704428. doi: 10.1177/2041731417704428.
20
Achilli T, Meyer J, Morgan J. Advances in the formation, use and understanding of multi-cellular spheroids[J]. Expert Opin Biol Ther, 2012, 12(10):1347-1360.
21
Zhang S, Zhang B, Chen X, et al. Three-dimensional culture in a microgravity bioreactor improves the engraftment efficiency of hepatic tissue constructs in mice[J]. J Mater Sci Mater Med, 2014, 25(12):2699-2709.
22
Si A, Wang L, Miao K, et al. miR-219 regulates liver cancer stem cell expansion via E-cadherin pathway[J]. Cell cycle, 2019, 18(24):3550-3561.
23
Lee B, Kim M, Lee J, et al. Modulation of Huh7.5 spheroid formation and functionality using modified PEG-based hydrogels of different stiffness[J]. PLoS One, 2015, 10(2):e0118123. doi: 10.1371/journal.pone.0118123.
24
Tsai A, Liu Y, Yuan X, et al. Compaction, fusion, and functional activation of three-dimensional human mesenchymal stem cell aggregate[J]. Tissue Eng Part A, 2015, 21(9-10):1705-1719.
25
Cui X, Hartanto Y, Zhang H. Advances in multicellular spheroids formation[J]. J R Soc Interface, 2017, 14(127):20160877. doi: 10.1098/rsif.2016.0877.
26
Zhang Y, Mao H, Gao C, et al. Enhanced biological functions of human mesenchymal stem-cell aggregates incorporating E-cadherin-modified plga microparticles[J]. Adv Healthc Mater, 2016, 5(15):1949-1959.
27
Lee E, Park S, Kang S, et al. Spherical bullet formation via E-cadherin promotes therapeutic potency of mesenchymal stem cells derived from human umbilical cord blood for myocardial infarction[J]. Mol Ther, 2012, 20(7):1424-1433.
28
Sen B, Guilluy C, Xie Z, et al. Mechanically induced focal adhesion assembly amplifies anti-adipogenic pathways in mesenchymal stem cells[J]. Stem cells, 2011, 29(11):1829-1836.
29
Zhou Y, Chen H, Li H, et al. 3D culture increases pluripotent gene expression in mesenchymal stem cells through relaxation of cytoskeleton tension[J]. J Cell Mol Med, 2017, 21(6):1073-1084.
30
Cheng N, Chen S, Li J, et al. Short-term spheroid formation enhances the regenerative capacity of adipose-derived stem cells by promoting stemness, angiogenesis, and chemotaxis[J]. Stem Cells Transl Med, 2013, 2(8):584-594.
31
Zhang S, Liu P, Chen L, et al. The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential[J]. Biomaterials, 2015, 41:15-25.
32
Tsai A, Liu Y, Yuan X, et al. Aggregation kinetics of human mesenchymal stem cells under wave motion[J]. Biotechnol J, 2017, 12(5). doi: 10.1002/biot.201600448.
33
Cheng N, Wang S, Young T. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities[J]. Biomaterials, 2012, 33(6):1748-1758.
34
Yeh H, Liu B, Sieber M, et al. Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes[J]. BMC Genomics, 2014, 15(1):10.
35
Miceli V, Pampalone M, Vella S, et al. Comparison of immunosuppressive and angiogenic properties of human amnion-derived mesenchymal stem cells between 2D and 3D culture systems[J]. Stem Cells Int, 2019, 2019:7486279.doi: 10.1155/2019/7486279.
36
Park I, Chung P, Ahn J, et al. Human adipose-derived stem cell spheroid treated with photobiomodulation irradiation accelerates tissue regeneration in mouse model of skin flap ischemia[J]. Lasers Med Sci, 2017, 32(8):1737-1746.
37
Mohammadi Ghahhari N, Maghsood F, Jahandideh S, et al. Secretome of aggregated embryonic stem cell-derived mesenchymal stem cell modulates the release of inflammatory factors in lipopolysaccharide-induced peripheral blood mononuclear cells[J]. Iran Biomed J, 2018, 22(4):237-245.
38
Zimmermann J, McDevitt T. Pre-conditioning mesenchymal stromal cell spheroids for immunomodulatory paracrine factor secretion[J]. Cytotherapy, 2014, 16(3):331-345.
39
Domnina A, Novikova P, Obidina J, et al. Human mesenchymal stem cells in spheroids improve fertility in model animals with damaged endometrium[J]. Stem Cell Res Ther, 2018, 9(1):50.
40
Domnina A, Ivanova J, Alekseenko L, et al. Three-dimensional compaction switches stress response programs and enhances therapeutic efficacy of endometrial mesenchymal stem/stromal cells[J]. Front Cell Dev Biol, 2020, 8:473. doi: 10.3389/fcell.2020.00473.
41
Keung A, Kumar S, Schaffer D. Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues[J]. Annu Rev Cell Dev Biol, 2010, 26:533-556.
42
Schmitz C, Pepelanova I, Seliktar D, et al. Live reporting for hypoxia: Hypoxia sensor-modified mesenchymal stem cells as in vitro reporters[J]. Biotechnol Bioeng, 2020, 117(11):3265-3276.
43
Cesarz Z, Tamama K. Spheroid Culture of Mesenchymal Stem Cells[J]. Stem Cells Int, 2016, 2016:9176357. doi: 10.1155/2016/9176357.
44
Jiang Z, Li Y, Ji X, et al. Protein profiling identified key chemokines that regulate the maintenance of human pluripotent stem cells[J]. Sci Rep, 2017, 7(1):14510.
45
Guo L, Zhou Y, Wang S, et al. Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) spheroids[J]. J Cell Mol Med, 2014, 18(10):2009-2019.
[1] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[2] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[3] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[4] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[5] 潘玮瑄, 郝少龙, 韩威. 低氧微环境与实体恶性肿瘤m6A修饰的研究进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 461-464.
[6] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[7] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[8] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[9] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[10] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[11] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[12] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[13] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[14] 孙秀艳, 徐庆蕾, 马鹏涛, 胡志元, 郭传真, 祝成红. 腹腔镜胃癌根治术中患者体温变化与压力性损伤及受压部位微环境的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 480-484.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要