切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (06) : 378 -382. doi: 10.3877/cma.j.issn.2095-1221.2021.06.009

综述

人间充质干细胞治疗系统性硬化症的研究进展
崔洁涵1, 马隽2, 宋永周3, 刘爱京4,()   
  1. 1. 050000 石家庄,河北医科大学第二医院风湿免疫科
    2. 050000 石家庄,河北医科大学解剖教研室;050000 石家庄,河北省干细胞医学转化工程研究中心
    3. 050000 石家庄,河北医科大学第二医院骨科
    4. 050000 石家庄,河北医科大学第二医院风湿免疫科;050000 石家庄,河北省干细胞医学转化工程研究中心
  • 收稿日期:2021-04-30 出版日期:2021-12-01
  • 通信作者: 刘爱京

Research progress in human mesenchymal stem cells as treatment for systemic sclerosis

Jiehan Cui1, Jun Ma2, Yongzhou Song3, Aijing Liu4,()   

  1. 1. Department of Rheumatology and Immunology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
    2. Department of Anatomy, Hebei Medical University, Shijiazhuang 050000, China; Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang 050000, China
    3. Department of Orthopedic Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
    4. Department of Rheumatology and Immunology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang 050000, China
  • Received:2021-04-30 Published:2021-12-01
  • Corresponding author: Aijing Liu
引用本文:

崔洁涵, 马隽, 宋永周, 刘爱京. 人间充质干细胞治疗系统性硬化症的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 378-382.

Jiehan Cui, Jun Ma, Yongzhou Song, Aijing Liu. Research progress in human mesenchymal stem cells as treatment for systemic sclerosis[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(06): 378-382.

系统性硬化症(SSc)是一种罕见且累及全身多脏器的自身免疫性疾病。其病因和发病机制复杂,目前多以对症治疗为主。随着对干细胞研究的不断探索,干细胞治疗在医学领域的价值日益突显。越来越多的证据表明干细胞作为一种具有强大分化及再生潜能的有效手段在SSc患者的治疗中逐渐呈现出良好的效果。本文主要对3种常见来源的人间充质干细胞(hMSCs)包括骨髓hMSCs、脂肪hMSCs和脐带hMSCs在SSc患者中治疗的研究进展进行比较及展望,旨在为SSc患者的治疗提供更多依据。

Systemic sclerosis (SSc) is a rare autoimmune disease that affects multiple organs throughout the body. Due to a poor understanding of the etiology and pathogenesis of SSc, at present, symptomatic treatment is commonly used. With the continuous exploration of stem-cell research, the value of stem cell therapy in the medical field is increasingly highlighted. There is increasing evidence to suggest that stem cells as an effective means with strong differentiation and regenerative potential gradually show good results in the treatment of SSc patients. In this review, in order to provide a more solid basis, we compared and looked forward to the research progress in three common sources of human mesenchymal stem cells (hMSCs) including bone marrow hMSCs, adipose-derived hMSCs and umbilical cord-derived hMSCs in the treatment of patients with SSc.

1
Denton C, Khanna D. Systemic sclerosis[J]. Lancet, 2017, 390(10103): 1685-1699.
2
Bairkdar M, Rossides M, Westerlind H, et al. Incidence and prevalence of systemic sclerosis globally:a comprehensive systematic review and meta-analysis[J]. Rheumatology (Oxford), 2021, 60(7):3121-3133.
3
Abdul Wahab N, Guad R, Subramaniyan V, et al. Human exfoliated deciduous teeth stem cells:features and therapeutic effects on neurogenerative and hepatobiliary-pancreatic diseases[J]. Curr Stem Cell Res Ther, 2021, 16(5):563-576.
4
He X, Yang Y, Yao M, et al. Combination of human umbilical cord mesenchymal stem (stromal) cell transplantation with IFN-γ treatment synergistically improves the clinical outcomes of patients with rheumatoid arthritis[J]. Ann Rheum Dis, 2020, 79(10):1298-1304.
5
Álvaro-Afonso F, Sanz-Corbalán I, Lázaro-Martínez J, et al. Adipose-derived mesenchymal stem cells in the treatment of diabetic foot ulcers:a review of preclinical and clinical studies[J]. Angiology, 2020, 71(9):853-863.
6
Park Y, Lee Y, Koh J, et al. Clinical efficacy and safety of injection of stromal vascular fraction derived from autologous adipose tissues in systemic sclerosis patients with hand disability:a proof-of-concept trial[J]. J Clin Med, 2020, 9(9):3023.
7
Liang J, Zhang H, Kong W, et al. Safety analysis in patients with autoimmune disease receiving allogeneic mesenchymal stem cells infusion:a long-term retrospective study[J]. Stem Cell Res Ther, 2018, 9(1):312.
8
Koliaraki V, Prados A, Armaka M, et al. The mesenchymal context in inflammation, immunity and cancer[J]. Nat Immunol, 2020, 21(9):974-982.
9
Hatzistergos KE, Blum A, Ince T, et al. What is the oncologic risk of stem cell treatment for heart disease?[J]. Circ Res, 2011, 108(11):1300-1303.
10
Barkholt L, Flory E, Jekerle V, et al. Risk of tumorigenicity in mesenchymal stromal cell-based therapies-bridging scientific observations and regulatory viewpoints[J]. Cytotherapy, 2013, 15(7):753-759.
11
Kowal-Bielecka O, Fransen J, Avouac J, et al. Update of EULAR recommendations for the treatment of systemic sclerosis[J]. Ann Rheum Dis, 2017, 76(8):1327-1339.
12
Van Laar J M, Farge D, Sont JK, et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis:a randomized clinical trial[J]. JAMA, 2014, 311(24):2490-2498.
13
Pasquini MC, Voltarelli J, Atkins HL, et al. Transplantation for autoimmune diseases in north and south America:a report of the center for international blood and marrow transplant research[J]. Biol Blood Marrow Transplant, 2012, 18(10):1471-1478.
14
Farge D, Labopin M, Tyndall A, et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases:an observational study on 12 years' experience from the European Group for Blood and Marrow Transplantation Working Party on Autoimmune Diseases[J]. Haematologica, 2010, 95(2):284-292.
15
Keyes-Elstein L, Brittain E, Pinckney A, et al. Safety and efficacy of HSCT for systemic sclerosis across clinical trials[J]. Nat Rev Rheumatol, 2020, 16(11):661.
16
Vasanthan J, Gurusamy N, Rajasingh S, et al. Role of human mesenchymal stem cells in regenerative therapy[J]. Cells, 2020, 10(1):54. doi:10.3390/cells10010054.
17
Okamura A, Matsushita T, Komuro A, et al. Adipose-derived stromal/stem cells successfully attenuate the fibrosis of scleroderma mouse models[J]. Int J Rheum Dis, 2020, 23(2):216-225.
18
Yang Y, Zhu S, Li Y, et al. Human umbilical cord mesenchymal stem cells ameliorate skin fibrosis development in a mouse model of bleomycin-induced systemic sclerosis[J]. Exp Ther Med, 2020, 20(6):257.
19
Scuderi N, Ceccarelli S, Onesti MG, et al. Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic Sclerosis[J]. Cell Transplantation, 2013, 22(5):779-795.
20
Heo J, Choi Y, Kim H, et al. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue[J]. Int J Mol Med, 2016, 37(1):115-125.
21
Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood[J]. Exp Hematol, 2005, 33(11):1402-1416.
22
Christodoulou I, Kolisis F, Papaevangeliou D, et al. Comparative evaluation of human mesenchymal stem cells of fetal (Wharton's Jelly) and adult (Adipose Tissue) origin during prolonged in vitro expansion:considerations for cytotherapy[J]. Stem Cells Int, 2013, 2013:246134. doi: 10.1155/2013/246134.
23
Hou T, Xu J, Wu X, et al. Umbilical cord Wharton's Jelly:a new potential cell source of mesenchymal stromal cells for bone tissue engineering[J]. Tissue Eng Part A, 2009, 15(9):2325-2334.
24
Cai J, Li W, Su H, et al. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells[J]. J Biol Chem, 2010, 285(15):11227-11234.
25
Labedz-Maslowska A, Bryniarska N, Kubiak A, et al. Multilineage differentiation potential of human dental pulp stem cells-impact of 3D and hypoxic environment on osteogenesis in vitro[J]. Int J Mol Sci, 2020, 21(17):6172.
26
Li Z, Jiang CM, An S, et al. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells[J]. Oral Dis, 2014, 20(1):25-34.
27
Rotter N, Oder J, Schlenke P, et al. Isolation and characterization of adult stem cells from human salivary glands[J]. Stem Cells Dev, 2008, 17(3):509-518.
28
Morito T, Muneta T, Hara K, et al. Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans[J]. Rheumatology (Oxford), 2008, 47(8):1137-1143.
29
Hatakeyama A, Uchida S, Utsunomiya H, et al. Isolation and characterization of synovial mesenchymal stem cell derived from hip joints:a comparative analysis with a matched control knee group[J]. Stem Cells Int, 2017, 2017:9312329.doi: 10.1155/2017/9312329.
30
Ryu J, Jung Y, Cho M, et al. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes[J]. Biochem Biophys Res Commun, 2014, 447(4):715-720.
31
Cheng Y, Li L, Wang D, et al. Characteristics of human endometrium-derived mesenchymal stem cells and their tropism to endometriosis[J]. Stem Cells Int, 2017, 2017:4794827.doi: 10.1155/2017/4794827.
32
Tantrawatpan C, Manochantr S, Kheolamai P, et al. Pluripotent gene expression in mesenchymal stem cells from human umbilical cord Wharton's jelly and their differentiation potential to neural-like cells[J]. J Med Assoc Thai, 2013, 96(9):1208-1217.
33
Friedenstein A, Gorskaja J, Kulagina N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J]. Exp Hematol, 1976, 4(5):267-274.
34
Christopeit M, Schendel M, Föll J, et al. Marked improvement of severe progressive systemic sclerosis after transplantation of mesenchymal stem cells from an allogeneic haploidentical-related donor mediated by ligation of CD137L[J]. Leukemia, 2008, 22(5):1062-1064.
35
Keyszer G, Christopeit M, Fick S, et al. Treatment of severe progressive systemic sclerosis with transplantation of mesenchymal stromal cells from allogeneic related donors:report of five cases[J]. Arthritis Rheum, 2011, 63(8):2540-2542.
36
Larghero J, Farge D, Braccini A, et al. Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis[J]. Ann Rheum Dis, 2008, 67(4):443-449.
37
Cipriani P, Di Benedetto P, Liakouli V, et al. Mesenchymal stem cells (MSCs) from scleroderma patients (SSc) preserve their immunomodulatory properties although senescent and normally induce T regulatory cells (Tregs) with a functional phenotype:implications for cellular-based therapy[J]. Clin Exp Immunol, 2013, 173(2):195-206.
38
Guiducci S, Porta F, Saccardi R, et al. Autologous mesenchymal stem cells foster revascularization of ischemic limbs in systemic sclerosis:a case report[J]. Ann Intern Med, 2010, 153(10):650-654.
39
Guiducci S, Manetti M, Romano E, et al. Bone marrow-derived mesenchymal stem cells from early diffuse systemic sclerosis exhibit a paracrine machinery and stimulate angiogenesis in vitro[J]. Ann Rheum Dis, 2011, 70(11):2011-2021.
40
黄晓燕, 李梦涛, 王迁, 等. 系统性硬化症患者骨髓间充质干细胞的生物学特性[J]. 中华临床免疫和变态反应杂志, 2011, 5(3):165-72+249.
41
Vanneaux V, Farge-Bancel D, Lecourt S, et al. Expression of transforming growth factor beta receptor II in mesenchymal stem cells from systemic sclerosis patients[J]. BMJ open, 2013, 3(1):e001890.doi: 10.1136/bmjopen-2012-001890.
42
Cipriani P, Guiducci S, Miniati I, et al. Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells: new insight into the pathogenesis of systemic sclerosis[J]. Arthritis Rheum, 2007, 56(6):1994-2004.
43
Cipriani P, Marrelli A, Benedetto PD, et al. Scleroderma mesenchymal stem cells display a different phenotype from healthy controls; implications for regenerative medicine[J]. Angiogenesis, 2013, 16(3):595-607.
44
Chu D, Phuong T, Tien N, et al. An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells[J]. Int J Mol Sci, 2020, 21(3):708.
45
Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells:comparison with bone marrow mesenchymal stem cells[J]. Br J Haematol, 2005, 129(1):118-129.
46
Sah S, Kanaujiya J, Chen I, et al. Generation of keratinocytes from human induced pluripotent stem cells under defined culture conditions[J]. Cell Reprogram, 2021, 23(1):1-13.
47
Bi H, Li H, Zhang C, et al. Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process[J]. Stem Cell Res Ther, 2019, 10(1):302.
48
Ménard C, Dulong J, Roulois D, et al. Integrated transcriptomic, phenotypic, and functional study reveals tissue-specific immune properties of mesenchymal stromal cells[J]. Stem cells, 2020, 38(1):146-159.
49
Capelli C, Zaccara E, Cipriani P, et al. Phenotypical and functional characteristics of in vitro-expanded adipose-derived mesenchymal stromal cells from patients with systematic sclerosis[J]. Cell Transplant, 2017, 26(5):841-854.
50
Onesti MG, Fioramonti P, Carella S, et al. Improvement of mouth functional disability in systemic sclerosis patients over one year in a trial of fat transplantation versus adipose-derived stromal cells[J]. Stem Cells Int, 2016, 2016:2416192. doi: 10.1155/2016/2416192.
51
Granel B, Daumas A, Jouve E, et al. Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis:an open-label phase I trial[J]. Ann Rheum Dis, 2015, 74(12):2175-2182.
52
Guillaume-Jugnot P, Daumas A, Magalon J, et al. Autologous adipose-derived stromal vascular fraction in patients with systemic sclerosis:12-month follow-up[J]. Rheumatology (Oxford), 2016, 55(2):301-306.
53
Magalon J, Velier M, Simoncini S, et al. Molecular profile and proangiogenic activity of the adipose-derived stromal vascular fraction used as an autologous innovative medicinal product in patients with systemic sclerosis[J]. Ann Rheum Dis, 2019, 78(3):391-398.
54
Park Y, Lee YJ, Koh JH, et al. Clinical efficacy and safety of injection of stromal vascular fraction derived from autologous adipose tissues in systemic sclerosis patients with hand disability:a proof-of-concept trial[J]. J Clin Med, 2020, 9(9):3023.doi: 10.3390/jcm9093023.
55
Francesco V, Paola B, Alessandro G, et al. Combined platelet-rich plasma and lipofilling treatment provides great improvement in facial skin-induced lesion regeneration for scleroderma patients[J]. Stem Cell Res Ther, 2017, 8(1):236.doi: 10.1186/s13287-017-0690-3.
56
Kuca-Warnawin E, Skalska U, Janicka I, et al. The phenotype and secretory activity of adipose-derived mesenchymal stem cells (ASCs) of patients with rheumatic diseases[J]. Cells, 2019, 8(12):1659.doi: 10.3390/cells8121659.
57
Griffin M, Ryan CM, Pathan O, et al. Characteristics of human adipose derived stem cells in scleroderma in comparison to sex and age matched normal controls:implications for regenerative medicine[J]. Stem Cell Res Ther, 2017, 8(1):23.
58
Barrett A, Fong C, Subramanian A, et al. Human Wharton's Jelly mesenchymal stem cells show unique gene expression compared with bone marrow mesenchymal stem cells using single-cell RNA-sequencing[J]. Stem Cells Dev, 2019, 28(3):196-211.
59
Araújo A, Salton G, Furlan J, et al. Comparison of human mesenchymal stromal cells from four neonatal tissues:Amniotic membrane, chorionic membrane, placental decidua and umbilical cord[J]. Cytotherapy, 2017, 19(5):577-585.
60
Coelho A, Alvites R, Branquinho M, et al. Mesenchymal stem cells (MSCs) as a potential therapeutic strategy in COVID-19 patients:literature research[J]. Front Cell Dev Biol, 2020, 8:602647.doi: 10.3389/fcell.2020.602647.
61
Abumaree M, Abomaray F, Alshabibi M, et al. Immunomodulatory properties of human placental mesenchymal stem/stromal cells[J]. Placenta, 2017, 59:87-95.
62
Zhang H, Liang J, Tang X, et al. Sustained benefit from combined plasmapheresis and allogeneic mesenchymal stem cells transplantation therapy in systemic sclerosis[J]. Arthritis Res Ther, 2017, 19(1):165.doi: 10.1186/s13075-017-1373-2.
63
王丹丹. 异基因间充质干细胞移植治疗自身免疫病的疗效及机制研究[D]. 南京:南京大学, 2013.
64
韩之波, 杨骏, 张勇. 使用皮肤间充质干细胞治疗系统性硬化症:中国,CN108451981B[P]. 2019-07-23.
[1] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[2] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[3] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[4] 刘柏隆, 周祥福. 压力性尿失禁阶梯治疗的项目介绍[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 125-125.
[5] 刘柏隆. 女性压力性尿失禁阶梯治疗之手术治疗方案选择[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 126-126.
[6] 石海波, 赵旭东, 王聪, 曲巍. 气肿性肾盂肾炎、气肿性膀胱炎并脓毒性休克一例报道并文献复习[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 644-647.
[7] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[8] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[9] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[10] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[11] 国文凯, 纪鹏程, 毕靖茹, 谢院生. IgA 肾病的十种治疗措施[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 327-333.
[12] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
[13] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[14] 张平骥, 徐钰, 李天水, 庞文翼, 符师宁, 张梦圆. 重症患者镇静治疗现状及期望的调查研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 562-567.
[15] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?