切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (06) : 378 -382. doi: 10.3877/cma.j.issn.2095-1221.2021.06.009

综述

人间充质干细胞治疗系统性硬化症的研究进展
崔洁涵1, 马隽2, 宋永周3, 刘爱京4,()   
  1. 1. 050000 石家庄,河北医科大学第二医院风湿免疫科
    2. 050000 石家庄,河北医科大学解剖教研室;050000 石家庄,河北省干细胞医学转化工程研究中心
    3. 050000 石家庄,河北医科大学第二医院骨科
    4. 050000 石家庄,河北医科大学第二医院风湿免疫科;050000 石家庄,河北省干细胞医学转化工程研究中心
  • 收稿日期:2021-04-30 出版日期:2021-12-01
  • 通信作者: 刘爱京

Research progress in human mesenchymal stem cells as treatment for systemic sclerosis

Jiehan Cui1, Jun Ma2, Yongzhou Song3, Aijing Liu4,()   

  1. 1. Department of Rheumatology and Immunology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
    2. Department of Anatomy, Hebei Medical University, Shijiazhuang 050000, China; Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang 050000, China
    3. Department of Orthopedic Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
    4. Department of Rheumatology and Immunology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang 050000, China
  • Received:2021-04-30 Published:2021-12-01
  • Corresponding author: Aijing Liu
引用本文:

崔洁涵, 马隽, 宋永周, 刘爱京. 人间充质干细胞治疗系统性硬化症的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 378-382.

Jiehan Cui, Jun Ma, Yongzhou Song, Aijing Liu. Research progress in human mesenchymal stem cells as treatment for systemic sclerosis[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(06): 378-382.

系统性硬化症(SSc)是一种罕见且累及全身多脏器的自身免疫性疾病。其病因和发病机制复杂,目前多以对症治疗为主。随着对干细胞研究的不断探索,干细胞治疗在医学领域的价值日益突显。越来越多的证据表明干细胞作为一种具有强大分化及再生潜能的有效手段在SSc患者的治疗中逐渐呈现出良好的效果。本文主要对3种常见来源的人间充质干细胞(hMSCs)包括骨髓hMSCs、脂肪hMSCs和脐带hMSCs在SSc患者中治疗的研究进展进行比较及展望,旨在为SSc患者的治疗提供更多依据。

Systemic sclerosis (SSc) is a rare autoimmune disease that affects multiple organs throughout the body. Due to a poor understanding of the etiology and pathogenesis of SSc, at present, symptomatic treatment is commonly used. With the continuous exploration of stem-cell research, the value of stem cell therapy in the medical field is increasingly highlighted. There is increasing evidence to suggest that stem cells as an effective means with strong differentiation and regenerative potential gradually show good results in the treatment of SSc patients. In this review, in order to provide a more solid basis, we compared and looked forward to the research progress in three common sources of human mesenchymal stem cells (hMSCs) including bone marrow hMSCs, adipose-derived hMSCs and umbilical cord-derived hMSCs in the treatment of patients with SSc.

1
Denton C, Khanna D. Systemic sclerosis[J]. Lancet, 2017, 390(10103): 1685-1699.
2
Bairkdar M, Rossides M, Westerlind H, et al. Incidence and prevalence of systemic sclerosis globally:a comprehensive systematic review and meta-analysis[J]. Rheumatology (Oxford), 2021, 60(7):3121-3133.
3
Abdul Wahab N, Guad R, Subramaniyan V, et al. Human exfoliated deciduous teeth stem cells:features and therapeutic effects on neurogenerative and hepatobiliary-pancreatic diseases[J]. Curr Stem Cell Res Ther, 2021, 16(5):563-576.
4
He X, Yang Y, Yao M, et al. Combination of human umbilical cord mesenchymal stem (stromal) cell transplantation with IFN-γ treatment synergistically improves the clinical outcomes of patients with rheumatoid arthritis[J]. Ann Rheum Dis, 2020, 79(10):1298-1304.
5
Álvaro-Afonso F, Sanz-Corbalán I, Lázaro-Martínez J, et al. Adipose-derived mesenchymal stem cells in the treatment of diabetic foot ulcers:a review of preclinical and clinical studies[J]. Angiology, 2020, 71(9):853-863.
6
Park Y, Lee Y, Koh J, et al. Clinical efficacy and safety of injection of stromal vascular fraction derived from autologous adipose tissues in systemic sclerosis patients with hand disability:a proof-of-concept trial[J]. J Clin Med, 2020, 9(9):3023.
7
Liang J, Zhang H, Kong W, et al. Safety analysis in patients with autoimmune disease receiving allogeneic mesenchymal stem cells infusion:a long-term retrospective study[J]. Stem Cell Res Ther, 2018, 9(1):312.
8
Koliaraki V, Prados A, Armaka M, et al. The mesenchymal context in inflammation, immunity and cancer[J]. Nat Immunol, 2020, 21(9):974-982.
9
Hatzistergos KE, Blum A, Ince T, et al. What is the oncologic risk of stem cell treatment for heart disease?[J]. Circ Res, 2011, 108(11):1300-1303.
10
Barkholt L, Flory E, Jekerle V, et al. Risk of tumorigenicity in mesenchymal stromal cell-based therapies-bridging scientific observations and regulatory viewpoints[J]. Cytotherapy, 2013, 15(7):753-759.
11
Kowal-Bielecka O, Fransen J, Avouac J, et al. Update of EULAR recommendations for the treatment of systemic sclerosis[J]. Ann Rheum Dis, 2017, 76(8):1327-1339.
12
Van Laar J M, Farge D, Sont JK, et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis:a randomized clinical trial[J]. JAMA, 2014, 311(24):2490-2498.
13
Pasquini MC, Voltarelli J, Atkins HL, et al. Transplantation for autoimmune diseases in north and south America:a report of the center for international blood and marrow transplant research[J]. Biol Blood Marrow Transplant, 2012, 18(10):1471-1478.
14
Farge D, Labopin M, Tyndall A, et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases:an observational study on 12 years' experience from the European Group for Blood and Marrow Transplantation Working Party on Autoimmune Diseases[J]. Haematologica, 2010, 95(2):284-292.
15
Keyes-Elstein L, Brittain E, Pinckney A, et al. Safety and efficacy of HSCT for systemic sclerosis across clinical trials[J]. Nat Rev Rheumatol, 2020, 16(11):661.
16
Vasanthan J, Gurusamy N, Rajasingh S, et al. Role of human mesenchymal stem cells in regenerative therapy[J]. Cells, 2020, 10(1):54. doi:10.3390/cells10010054.
17
Okamura A, Matsushita T, Komuro A, et al. Adipose-derived stromal/stem cells successfully attenuate the fibrosis of scleroderma mouse models[J]. Int J Rheum Dis, 2020, 23(2):216-225.
18
Yang Y, Zhu S, Li Y, et al. Human umbilical cord mesenchymal stem cells ameliorate skin fibrosis development in a mouse model of bleomycin-induced systemic sclerosis[J]. Exp Ther Med, 2020, 20(6):257.
19
Scuderi N, Ceccarelli S, Onesti MG, et al. Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic Sclerosis[J]. Cell Transplantation, 2013, 22(5):779-795.
20
Heo J, Choi Y, Kim H, et al. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue[J]. Int J Mol Med, 2016, 37(1):115-125.
21
Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood[J]. Exp Hematol, 2005, 33(11):1402-1416.
22
Christodoulou I, Kolisis F, Papaevangeliou D, et al. Comparative evaluation of human mesenchymal stem cells of fetal (Wharton's Jelly) and adult (Adipose Tissue) origin during prolonged in vitro expansion:considerations for cytotherapy[J]. Stem Cells Int, 2013, 2013:246134. doi: 10.1155/2013/246134.
23
Hou T, Xu J, Wu X, et al. Umbilical cord Wharton's Jelly:a new potential cell source of mesenchymal stromal cells for bone tissue engineering[J]. Tissue Eng Part A, 2009, 15(9):2325-2334.
24
Cai J, Li W, Su H, et al. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells[J]. J Biol Chem, 2010, 285(15):11227-11234.
25
Labedz-Maslowska A, Bryniarska N, Kubiak A, et al. Multilineage differentiation potential of human dental pulp stem cells-impact of 3D and hypoxic environment on osteogenesis in vitro[J]. Int J Mol Sci, 2020, 21(17):6172.
26
Li Z, Jiang CM, An S, et al. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells[J]. Oral Dis, 2014, 20(1):25-34.
27
Rotter N, Oder J, Schlenke P, et al. Isolation and characterization of adult stem cells from human salivary glands[J]. Stem Cells Dev, 2008, 17(3):509-518.
28
Morito T, Muneta T, Hara K, et al. Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans[J]. Rheumatology (Oxford), 2008, 47(8):1137-1143.
29
Hatakeyama A, Uchida S, Utsunomiya H, et al. Isolation and characterization of synovial mesenchymal stem cell derived from hip joints:a comparative analysis with a matched control knee group[J]. Stem Cells Int, 2017, 2017:9312329.doi: 10.1155/2017/9312329.
30
Ryu J, Jung Y, Cho M, et al. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes[J]. Biochem Biophys Res Commun, 2014, 447(4):715-720.
31
Cheng Y, Li L, Wang D, et al. Characteristics of human endometrium-derived mesenchymal stem cells and their tropism to endometriosis[J]. Stem Cells Int, 2017, 2017:4794827.doi: 10.1155/2017/4794827.
32
Tantrawatpan C, Manochantr S, Kheolamai P, et al. Pluripotent gene expression in mesenchymal stem cells from human umbilical cord Wharton's jelly and their differentiation potential to neural-like cells[J]. J Med Assoc Thai, 2013, 96(9):1208-1217.
33
Friedenstein A, Gorskaja J, Kulagina N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J]. Exp Hematol, 1976, 4(5):267-274.
34
Christopeit M, Schendel M, Föll J, et al. Marked improvement of severe progressive systemic sclerosis after transplantation of mesenchymal stem cells from an allogeneic haploidentical-related donor mediated by ligation of CD137L[J]. Leukemia, 2008, 22(5):1062-1064.
35
Keyszer G, Christopeit M, Fick S, et al. Treatment of severe progressive systemic sclerosis with transplantation of mesenchymal stromal cells from allogeneic related donors:report of five cases[J]. Arthritis Rheum, 2011, 63(8):2540-2542.
36
Larghero J, Farge D, Braccini A, et al. Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis[J]. Ann Rheum Dis, 2008, 67(4):443-449.
37
Cipriani P, Di Benedetto P, Liakouli V, et al. Mesenchymal stem cells (MSCs) from scleroderma patients (SSc) preserve their immunomodulatory properties although senescent and normally induce T regulatory cells (Tregs) with a functional phenotype:implications for cellular-based therapy[J]. Clin Exp Immunol, 2013, 173(2):195-206.
38
Guiducci S, Porta F, Saccardi R, et al. Autologous mesenchymal stem cells foster revascularization of ischemic limbs in systemic sclerosis:a case report[J]. Ann Intern Med, 2010, 153(10):650-654.
39
Guiducci S, Manetti M, Romano E, et al. Bone marrow-derived mesenchymal stem cells from early diffuse systemic sclerosis exhibit a paracrine machinery and stimulate angiogenesis in vitro[J]. Ann Rheum Dis, 2011, 70(11):2011-2021.
40
黄晓燕, 李梦涛, 王迁, 等. 系统性硬化症患者骨髓间充质干细胞的生物学特性[J]. 中华临床免疫和变态反应杂志, 2011, 5(3):165-72+249.
41
Vanneaux V, Farge-Bancel D, Lecourt S, et al. Expression of transforming growth factor beta receptor II in mesenchymal stem cells from systemic sclerosis patients[J]. BMJ open, 2013, 3(1):e001890.doi: 10.1136/bmjopen-2012-001890.
42
Cipriani P, Guiducci S, Miniati I, et al. Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells: new insight into the pathogenesis of systemic sclerosis[J]. Arthritis Rheum, 2007, 56(6):1994-2004.
43
Cipriani P, Marrelli A, Benedetto PD, et al. Scleroderma mesenchymal stem cells display a different phenotype from healthy controls; implications for regenerative medicine[J]. Angiogenesis, 2013, 16(3):595-607.
44
Chu D, Phuong T, Tien N, et al. An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells[J]. Int J Mol Sci, 2020, 21(3):708.
45
Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells:comparison with bone marrow mesenchymal stem cells[J]. Br J Haematol, 2005, 129(1):118-129.
46
Sah S, Kanaujiya J, Chen I, et al. Generation of keratinocytes from human induced pluripotent stem cells under defined culture conditions[J]. Cell Reprogram, 2021, 23(1):1-13.
47
Bi H, Li H, Zhang C, et al. Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process[J]. Stem Cell Res Ther, 2019, 10(1):302.
48
Ménard C, Dulong J, Roulois D, et al. Integrated transcriptomic, phenotypic, and functional study reveals tissue-specific immune properties of mesenchymal stromal cells[J]. Stem cells, 2020, 38(1):146-159.
49
Capelli C, Zaccara E, Cipriani P, et al. Phenotypical and functional characteristics of in vitro-expanded adipose-derived mesenchymal stromal cells from patients with systematic sclerosis[J]. Cell Transplant, 2017, 26(5):841-854.
50
Onesti MG, Fioramonti P, Carella S, et al. Improvement of mouth functional disability in systemic sclerosis patients over one year in a trial of fat transplantation versus adipose-derived stromal cells[J]. Stem Cells Int, 2016, 2016:2416192. doi: 10.1155/2016/2416192.
51
Granel B, Daumas A, Jouve E, et al. Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis:an open-label phase I trial[J]. Ann Rheum Dis, 2015, 74(12):2175-2182.
52
Guillaume-Jugnot P, Daumas A, Magalon J, et al. Autologous adipose-derived stromal vascular fraction in patients with systemic sclerosis:12-month follow-up[J]. Rheumatology (Oxford), 2016, 55(2):301-306.
53
Magalon J, Velier M, Simoncini S, et al. Molecular profile and proangiogenic activity of the adipose-derived stromal vascular fraction used as an autologous innovative medicinal product in patients with systemic sclerosis[J]. Ann Rheum Dis, 2019, 78(3):391-398.
54
Park Y, Lee YJ, Koh JH, et al. Clinical efficacy and safety of injection of stromal vascular fraction derived from autologous adipose tissues in systemic sclerosis patients with hand disability:a proof-of-concept trial[J]. J Clin Med, 2020, 9(9):3023.doi: 10.3390/jcm9093023.
55
Francesco V, Paola B, Alessandro G, et al. Combined platelet-rich plasma and lipofilling treatment provides great improvement in facial skin-induced lesion regeneration for scleroderma patients[J]. Stem Cell Res Ther, 2017, 8(1):236.doi: 10.1186/s13287-017-0690-3.
56
Kuca-Warnawin E, Skalska U, Janicka I, et al. The phenotype and secretory activity of adipose-derived mesenchymal stem cells (ASCs) of patients with rheumatic diseases[J]. Cells, 2019, 8(12):1659.doi: 10.3390/cells8121659.
57
Griffin M, Ryan CM, Pathan O, et al. Characteristics of human adipose derived stem cells in scleroderma in comparison to sex and age matched normal controls:implications for regenerative medicine[J]. Stem Cell Res Ther, 2017, 8(1):23.
58
Barrett A, Fong C, Subramanian A, et al. Human Wharton's Jelly mesenchymal stem cells show unique gene expression compared with bone marrow mesenchymal stem cells using single-cell RNA-sequencing[J]. Stem Cells Dev, 2019, 28(3):196-211.
59
Araújo A, Salton G, Furlan J, et al. Comparison of human mesenchymal stromal cells from four neonatal tissues:Amniotic membrane, chorionic membrane, placental decidua and umbilical cord[J]. Cytotherapy, 2017, 19(5):577-585.
60
Coelho A, Alvites R, Branquinho M, et al. Mesenchymal stem cells (MSCs) as a potential therapeutic strategy in COVID-19 patients:literature research[J]. Front Cell Dev Biol, 2020, 8:602647.doi: 10.3389/fcell.2020.602647.
61
Abumaree M, Abomaray F, Alshabibi M, et al. Immunomodulatory properties of human placental mesenchymal stem/stromal cells[J]. Placenta, 2017, 59:87-95.
62
Zhang H, Liang J, Tang X, et al. Sustained benefit from combined plasmapheresis and allogeneic mesenchymal stem cells transplantation therapy in systemic sclerosis[J]. Arthritis Res Ther, 2017, 19(1):165.doi: 10.1186/s13075-017-1373-2.
63
王丹丹. 异基因间充质干细胞移植治疗自身免疫病的疗效及机制研究[D]. 南京:南京大学, 2013.
64
韩之波, 杨骏, 张勇. 使用皮肤间充质干细胞治疗系统性硬化症:中国,CN108451981B[P]. 2019-07-23.
[1] 中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.
[2] 许正文, 李振, 侯振扬, 苏长征, 朱彪. 富血小板血浆联合植骨治疗早期非创伤性股骨头坏死[J]. 中华关节外科杂志(电子版), 2023, 17(06): 773-779.
[3] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[4] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[5] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[6] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[7] 钟广俊, 刘春华, 朱万森, 徐晓雷, 王兆军. MRI联合不同扫描序列在胃癌术前分期诊断及化疗效果和预后的评估[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 378-382.
[8] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
[9] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[10] 顾国英, 黄迎春, 刘佳, 居建明, 于国锋, 蒋荣. 个体化肠外营养在肠切除伴肠功能障碍患者中的应用研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 489-493.
[11] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[12] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[13] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[14] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[15] 戴俊, 李硕, 曹影, 汪守峰, 宋红毛, 蔡菁菁, 邵敏, 陈莉, 程雷, 怀德. 鼻内镜下改良高选择性翼管神经低温等离子消融术对中重度变应性鼻炎的效果研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 689-693.
阅读次数
全文


摘要