切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (04) : 234 -239. doi: 10.3877/cma.j.issn.2095-1221.2020.04.007

所属专题: 文献

综述

新型冠状病毒肺炎细胞治疗的关键策略和研究进展
姚惟琦1, 梅恒2, 石磊3, 张宇4, 胡豫2,()   
  1. 1. 430022 武汉,湖北省华中科技大学同济医学院附属协和医院血液科;3003842 天津,国家干细胞工程产品产业化基地
    2. 430022 武汉,湖北省华中科技大学同济医学院附属协和医院血液科
    3. 100039 北京,中国人民解放军总医院第五医学中心感染病医学部,国家感染性疾病临床医学研究中心
    4. 3003842 天津,国家干细胞工程产品产业化基地
  • 收稿日期:2020-03-12 出版日期:2020-08-01
  • 通信作者: 胡豫
  • 基金资助:
    国家重点研发计划"公共安全风险防控与应急技术装备"重点专项(2020YFC0845700)

Key strategies and research advances in cell therapy for COVID-19

Weiqi Yao1, Heng Mei2, Lei Shi3, Yu Zhang4, Yu Hu2,()   

  1. 1. Department of Heamtology, Union Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China; National Stem Cell Engineering Product Industrialization Base, Tianjin 3003842, China
    2. Department of Heamtology, Union Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China
    3. Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China
    4. National Stem Cell Engineering Product Industrialization Base, Tianjin 3003842, China
  • Received:2020-03-12 Published:2020-08-01
  • Corresponding author: Yu Hu
  • About author:
    Corresponding author: Hu Yu,
引用本文:

姚惟琦, 梅恒, 石磊, 张宇, 胡豫. 新型冠状病毒肺炎细胞治疗的关键策略和研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2020, 10(04): 234-239.

Weiqi Yao, Heng Mei, Lei Shi, Yu Zhang, Yu Hu. Key strategies and research advances in cell therapy for COVID-19[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(04): 234-239.

新型冠状病毒肺炎病毒感染性强,感染后的重型、危重型患者病死率高,尚无特效治疗方法。间充质干细胞具有免疫调节和组织修复功能,一方面可以通过分泌抑炎因子减少炎性因子表达,降低细胞因子风暴和急性呼吸窘迫综合征发生的风险,从而降低重症患者的死亡率;另一方面间充质干细胞可分泌营养因子且具有多向分化能力,能修复肺部组织损伤,阻止肺部纤维化进程并使其恢复,从而治疗病毒感染肺炎后引起的难治性肺损伤相关疾病。此外自然杀伤细胞等也可在病毒感染性疾病预防、减少轻症患者向重型患者转化等方面发挥作用。本文总结并分析了细胞治疗新型冠状病毒肺炎最新研究进展。

Coronavirus Disease 2019 (COVID-19) is highly infectious, with a high mortality rate among severe and critically severe patients with COVID-19. However, there is no effective treatment at present, which highlights a desperate need of a safe and effective treatment. Previous studies have revealed that mesenchymal stem cells (MSCs) have the ability to normalize immune system function and repair the damaged tissues. On the one hand, MSCs could reduce the possibility of cytokine storm and the risk of acute respiratory distress syndrome by secreting anti-inflammatory factors, and thus the mortality of critically ill patients. On the other hand, MSCs could repair damaged lung tissues, prevent pulmonary fibrosis, improve respiratory function by secreting trophic factors, and thus treat refractory lung injury-related diseases caused by coronavirus. Natural killer cells might play an important role in preventing viral infections and the transfer from patients with mild COVID-19 to patients with severe COVID-19. In this review, the current research of cell therapy for COVID-19 disease is summarized and analyzed.

图1 不同细胞在新型冠状病毒肺炎不同阶段中的潜在治疗作用
1
国家卫生健康委员会. 国家卫生健康委关于新型冠状病毒肺炎暂命名事宜的通知[EB/OL].(2020-02-07)[2020-06-23].

URL    
2
国家卫生健康委员会.新型冠状病毒感染的肺炎诊疗方案(试行第七版) [EB/OL].(2020-03-03)[2020-06-23].

URL    
3
国家卫生健康委员会.中华人民共和国国家卫生健康委员会公告[EB/OL].(2020-01-20)[2020-06-23].

URL    
4
世界卫生组织WHO. 关于2019新型冠状病毒疫情的《国际卫生条例(2005)》突发事件委员会第二次会议的声明[EB/OL].(2020-01-30). [2020-06-23].

URL    
5
Sohrabi C, Alsafi Z, O'Neill N, et al. World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19)[J]. Int J Surg, 2020, 76:71-76.
6
Chen W, Peter WH, Frederick GH, et al. A novel coronavirus outbreak of global health concern[J]. Lancet, 2020, 395(10223):470-473.
7
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382(8):727-733.
8
Vincent JM, Koopmans M, Doremalen NV, et al. A novel coronavirus emerging in China-key questions for impact assessment[J]. N Engl J Med, 2020, 382(8):692-694.
9
Xu Z, Lei S, Wang YJ, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. Lancet Respir Med, 2020, 8(4):420-422.
10
Lee KY. Pneumonia, acute respiratory distress syndrome, and early immune-modulator therapy[J]. Int J Mol Sci, 2017, 18(2):388.
11
Chen NS, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in wuhan, China:a descriptive study[J]. Lancet, 2020, 395(10223):507-513.
12
Bauer TT, Ewig S, Rodloff AC, et al. Acute respiratory distress syndrome and pneumonia: a comprehensive review of clinical data[J]. Clin Infect Dis, 2006, 43(6):748-756.
13
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in wuhan, China[J]. Lancet, 2020, 395(10223):497-506.
14
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in wuhan, China[J]. JAMA, 2020, 323(11):1061-1069.
15
Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities[J]. Nat Rev Clin Oncol, 2018, 15(1):47-62.
16
Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab[J]. Proc Natl Acad Sci U S A, 2020, 117(20): 10970-10975.
17
A study to evaluate the safety and efficacy of tocilizumab in patients with severe COVID-19 pneumonia(COVACTA) (EB/OL) (2020-03-25) [2020-06-23].

URL    
18
William GG, Subbarao K, Brian M, et al. Mechanisms of host defense following severe acute respiratory Syndrome-Coronavirus (SARS-CoV) pulmonary infection of mice[J]. J Immunol, 2004, 173(6):4030-4039.
19
Jansan CA, de Geus ED, van Haarlem DA, et al. Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity[J]. Sci Rep, 2013, 3(1):2478.
20
Parsons MS, Boulet S, Song R, et al. Mind the gap: lack of association between KIR3DL1*004/HLA-Bw4-induced natural killer cell function and protection from HIV infection[J]. J Infect Dis, 2010, 202 Suppl 3: S356-360.
21
Sarvaria A, Jawdat D, Madrigal JA, et al. Umbilical cord blood natural killer cells, their characteristics, and potential clinical applications[J]. Front Immunol, 2017, 8:329.
22
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4):315-317.
23
Krampera M, Galipeau J, Shi Y, et al. Immunological characterization of multipotent mesenchymal stromal cells--The international society for cellular therapy(ISCT)working proposal[J]. Cytotherapy, 2013, 15(9):1054-1061.
24
Loy H, Kuok DIT, Hui KPY, et al. Therapeutic implications of human umbilical cord mesenchymal stromal cells in attenuating influenza a(H5N1) virus-associated acute lung injury[J]. J Infect Dis, 2019, 219(2):186-196.
25
Lee JW, Fang X, Krasnodembskaya A, et al. Concise review: Mesenchymal stem cells for acute lung injury: role of paracrine soluble factors[J]. Stem Cells, 2011, 29(6):913-919.
26
Broekman W, Khedoe PPSJ, Schepers K, et al. Mesenchymal stromal cells: a novel therapy for the treatment of chronic obstructive pulmonary disease?[J]. Thorax, 2018, 73(6):565-574.
27
Chuang HM, Shih TE, Lu KY, et al. Mesenchymal stem cell therapy of pulmonary fibrosis: improvement with target combination[J]. Cell Transplant, 2018, 27(11): 1581-1587.
28
Fernández Vallone VB, Romaniuk MA, Choi H, et al. Mesenchymal stem cells and their use in therapy: What has been achieved?[J]. Differentiation, 2013, 85(1-2):1-10.
29
Fayyad-Kazan H, Faour WH, Badran B, et al. The immunomodulatory properties of human bone marrow-derived mesenchymal stromal cells are defined according to multiple immunobiological criteria[J]. Inflamm Res, 2016, 65(6):501-510.
30
Shi Y, Wang Y, Li Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases[J]. Nat Rev Nephrol, 2018, 14(8):493-507.
31
Wu Z, McGoogan JM. Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention[J]. JAMA, 2020. doi: 10.1001/jama.2020.2648. Online ahead of print.
32
Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease[J]. Nat Rev Immunol, 2008, 8(9):726-736.
33
Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells[J]. Blood, 2007, 110(10):3499-3506.
34
Zhou YY, Yamamoto Y, Xiao ZD, et al. The immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity[J]. J Clin Med, 2019, 8(7):1025.
35
Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities[J]. Cell Stem Cell, 2018, 22(6):824-833.
36
Uccelli A, Nicole Kerlero de Rosbo. The immunomodulatory function of mesenchymal stem cells: mode of action and pathways[J]. Ann N Y Acad Sci, 2015, 1351(1):114-126.
37
Zheng GP, Ge MH, Qiu G, et al. Mesenchymal stromal cells affect disease outcomes via macrophage polarization[J]. Stem Cells Int, 2015, 2015:989473.
38
Ðokić JM, Tomić SZ, Čolić MJ. Cross-talk between mesenchymal stem/stromal cells and dendritic cells[J]. Curr Stem Cell Res Ther, 2016, 11(1): 51-65.
39
Li N, Hua JL. Interactions between mesenchymal stem cells and the immune system[J]. Cellular and Molecular Life Sciences, 2017, 74(13):2345-2360.
40
Liu GY, Wang LH, Pang TX, et al. Umbilical cord-derived mesenchymal stem cells regulate thymic epithelial cell development and function in Foxn1 (-/-) mice[J]. Cell Mol Immunol, 2014, 11(3):275-284.
41
Li B, Zhang H, Zeng M, et al. Bone marrow mesenchymal stem cells protect alveolar macrophages from lipopolysaccharide-induced apoptosis partially by inhibiting the Wnt/β-catenin pathway[J]. Cell Biol Int, 2015, 39(2):192-200.
42
Lee JW, Fang X, Gupta N, et al. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung[J]. Proc Natl Acad Sci U S A, 2009, 106(38):16357-16362.
43
Yi Y, Hu SL, Xu XP, et al. The vascular endothelial growth factors-expressing character of mesenchymal stem cells plays a positive role in treatment of acute lung injury in vivo[J]. Mediators Inflamm, 2016, 2016: 2347938. Published online 2016 May 24. doi:10.1155/2016/2347938.
44
Megan O, Marius AM, Arul V, et al. Late rescue therapy with Cord-Derived mesenchymal stromal cells for established lung injury in experimental bronchopulmonary dysplasia[J]. Stem Cells Dev, 2020, 29(6):364-371.
45
Kwon JH, Miyeon K, Yun KB, et al. Decorin secreted by human umbilical cord Blood-Derived mesenchymal stem cells induces macrophage polarization via CD44 to repair hyperoxic lung injury[J]. Int J Mol Sci, 2019, 20(19):4815.
46
Hostettler KE, Gazdhar A, Khan P, et al. Multipotent mesenchymal stem cells in lung fibrosis[J]. PLoS One, 2017, 12(8):e0181946.
47
El-Tantawy HW, Ekram Nemr Abd Al Haleem. Therapeutic effects of stem cell on hyperglycemia, hyperlipidemia, and oxidative stress in alloxan-treated rats[J]. Mol Cell Biochem, 2014, 391(1/2):193-200.
48
Radwan SM, Ghoneim D, Salem M, et al. Adipose tissue-derived mesenchymal stem cells protect against Amiodarone-Induced lung injury in rats[J]. Appl Biochem Biotechnol, 2020191(3):1027-1041.
49
Mahmoudi T, Kamal A, Bashiri H, et al. Hydrogen peroxide preconditioning promotes protective effects of umbilical cord vein mesenchymal stem cells in experimental pulmonary fibrosis[J]. Adv Pharm Bull, 2020, 10(1):72-80.
50
Rojas M, Xu J, Woods CR, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung[J]. Am J Respir Cell Mol Biol, 2005, 33(2):145-152.
51
Neuringer IP, Randell SH. Stem cells and repair of lung injuries[J]. Respir Res, 2004, 5(1):6.
52
Zheng G, Huang L, Tong H, et al. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study[J]. Respir Res, 2014, 15(1):39.
53
Wilson JG, Liu KD, Zhuo H, et al. Mesenchymal stem (stromal) cells for treatment of ARDS:a phase 1 clinical trial[J]. Lancet Respir Med, 2015, 3(1):24-32.
54
Michael AM, Carolyn SC, Zhuo HJ, et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial[J]. Lancet Respir Med, 2019, 7(2):154-162.
55
Chen J, Hu CX, Chen LJ, et al. Clinical study of mesenchymal stem cell treatment for acute respiratory distress syndrome induced by epidemic influenza a (H7N9) infection: a hint for COVID-19 treatment[J]. Engineering(Beijing), 2020. doi: 10.1016/j.eng.2020.02.006. Online ahead of print.
56
Leng ZK, Zhu RJ, Wei H, et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia[J]. Aging Dis, 2020, 11(2):216-228.
57
Liang B, Chen JH, Li T, et al. (2020)Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells[J]. 2020, 9(2). doi:10.12074/202002.00084.
58
Li GD, Erik DC. Therapeutic options for the 2019 novel coronavirus (2019-nCoV)[J]. Nat Rev Drug Discov, 2020, 19(3):149-150.
59
中国细胞生物学学会干细胞生物学分会&中华医学会感染病学分会.《干细胞治疗新型冠状病毒肺炎(COVID-19)临床研究与应用专家指导意见》[EB/OL].(2020-03-27)[2020-06-23].

URL    
[1] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[2] 徐保平, 彭怀文, 喻怀斌, 王晓涛. 新型冠状病毒肺炎继发糖尿病酮症酸中毒合并肝门静脉积气一例[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 250-255.
[3] 陈天, 李歆, 刘开政, 邓永强. 口腔钛种植体成骨性能的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 200-205.
[4] 陈向军, 王在强, 王博荣, 王莉, 方芳, 金发光, 王光辉. PM2.5通过激活颗粒酶B/IL-18信号通路促进炎症因子表达[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 207-211.
[5] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[6] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[7] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[8] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[9] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[10] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[11] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[12] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[13] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
[14] 陆天, 孙道萍. 调节性B细胞在多发性骨髓瘤中的研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(02): 133-137.
[15] 孙冠超, 万军, 石卉. IgG相关食物不耐受与肠道免疫微环境相关性的研究进展[J/OL]. 中华胃肠内镜电子杂志, 2024, 11(03): 200-203.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?