切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (04) : 240 -245. doi: 10.3877/cma.j.issn.2095-1221.2020.04.008

所属专题: 文献

综述

间充质干细胞在新型冠状病毒肺炎治疗中的研究现状
李美1, 张华勇1,(), 孙凌云1   
  1. 1. 210008 南京大学医学院附属鼓楼医院风湿免疫科
  • 收稿日期:2020-05-20 出版日期:2020-08-01
  • 通信作者: 张华勇
  • 基金资助:
    国家自然科学基金项目(81671608)

Current research in mesenchymal stem cells in the treatment of COVID-19

Mei Li1, Huayong Zhang1,(), Lingyun Sun1   

  1. 1. Department of Rheumatology and Immunology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
  • Received:2020-05-20 Published:2020-08-01
  • Corresponding author: Huayong Zhang
  • About author:
    Corresponding author: Zhang Huayong, Email:
引用本文:

李美, 张华勇, 孙凌云. 间充质干细胞在新型冠状病毒肺炎治疗中的研究现状[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(04): 240-245.

Mei Li, Huayong Zhang, Lingyun Sun. Current research in mesenchymal stem cells in the treatment of COVID-19[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(04): 240-245.

新型冠状病毒肺炎(COVID-19)由新型冠状病毒(SARS-CoV-2)导致,可发生严重肺部损伤甚至死亡,目前为止仍在全球范围内广泛蔓延。SARS-CoV-2感染依赖于血管紧张素转换酶2 (ACE2)和Ⅱ型跨膜丝氨酸蛋白酶,可导致机体免疫紊乱,促发炎症风暴从而损伤靶器官。COVID-19目前尚无特效药物,间充质干细胞(MSCs)具有组织修复和免疫调节等功能,而且在流感病毒相关性肺炎及其他肺疾病中有一定疗效,因此可能是治疗COVID-19潜在有效药物。目前部分研究也显示出积极的治疗效果,而具体的疗效仍需进一步的临床研究来验证。

COVID-19 is caused by novel coronavirus (SARS-CoV-2), which can lead to severe lung injury and even death. SARS-CoV-2 infection induces immune disorders in the body, leading to cytokine storm and targeted organ damages via the angiotensin converting enzyme 2 (ACE2) and transmembrane protease serine 2. There are still no specific drugs for COVID-19.Mesenchymal stem cells (MSCs) have many functions, such as tissue repair, immune regulation, etc. They have certain therapeutic effects on influenza virus-associated pneumonia and other lung diseases, and are expected to become an effective drug for the treatment of COVID-19.At present, some studies have shown its positive therapeutic effects, but its specific efficacy remains to be confirmed by further clinical studies.

1
Khoury M, Cuenca J, Cruz F F, et al. Current status of cell-based therapies for respiratory virus infections: applicability to COVID-19[J]. Eur Respir J, 2020, 55(6):2000858.
2
新型冠状病毒肺炎疫情实时动态追踪[EB/OL].(2020-05-01)

URL    
3
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and tmprss2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020,181(2):271-280.e8.
4
Hamming I, Timens W, Bulthuis M, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis[J]. J Pathol, 2004, 203(2):631-637.
5
Iwata-Yoshikawa N, Okamura T, Shimizu Y, et al. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection[J]. J Virol, 2019, 93(6): e01815-18.
6
Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2[J]. Cell, 2020, 181(4):894-904.e9.
7
Chu H, Chan JF, Wang Y. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19[J]. Clin Infect Dis, 2020, ciaa410.
8
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497-506.
9
Ouyang Y, Yin J, Wang W, et al. Down-regulated gene expression spectrum and immune responses changed during the disease progression in COVID-19 patients[J]. Clin Infect Dis, 2020, ciaa462.
10
Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab[J]. Proc Natl Acad Sci U S A, 2020, 117(20):10970-10975.
11
Zhou Y, Fu B, Zheng X, et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients[J]. National Science Review, 2020, 7(6):998-1002.
12
Bourgonje AR, Abdulle AE, Timens W, et al. Angiotensin-converting enzyme-2 (ACE2), SARS-CoV-2 and pathophysiology of coronavirus disease 2019 (COVID-19)[J]. J Pathol, 2020, 251(3):228-248.
13
Jin Y, Yang H, Ji W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19[J]. Viruses, 2020, 12(4):372.
14
Imai Y, Kuba K, Penninger JM. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice[J]. Exp Physiol, 2008, 93(5):543-548.
15
Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID- 19[J]. Thromb Res, 2020, 191:145-147.
16
Fox SE, Akmatbekov A, Harbert JL, et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans[J]. Lancet Respir Med, 2020, 8(7):681-686.
17
Wang L, Li Y, Chen X, et al. MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture[J]. Hematology, 2002, 7(2):113-117.
18
Wang L, Li Y, Chen J, et al. Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture[J]. Exp Hematol, 2002, 30(7):831-836.
19
Ji JF, He BP, Dheen ST, et al. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury[J]. Stem Cells, 2004, 22(3):415-427.
20
Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells[J]. Stem Cell Res Ther, 2016, 7:7.
21
Rustad KC, Gurtner GC. Mesenchymal stem cells home to sites of injury and inflammation[J]. Adv Wound Care (New Rochelle), 2012,1(4):147-152.
22
Rippon HJ, Polak JM, Qin M, et al. Derivation of distal lung epithelial progenitors from murine embryonic stem cells using a novel three-step differentiation protocol[J]. Stem Cells, 2006, 24(5):1389-1398.
23
Ortiz LA, Gambelli F, McBride C, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects[J]. Proc Natl Acad Sci U S A, 2003, 100(14):8407-8411.
24
Volarevic V, Nurkovic J, Arsenijevic N, et al. Concise review: Therapeutic potential of mesenchymal stem cells for the treatment of acute liver failure and cirrhosis[J]. Stem Cells, 2014, 32(11):2818-2823.
25
Lee RH, Seo MJ, Reger RL, et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice[J]. Proc Natl Acad Sci U S A, 2006, 103(46):17438-17443.
26
Humphreys B, Bonventre J. Mesenchymal stem cells in acute kidney injury[J]. Annu Rev Med, 2008, 59:311-325.
27
Morigi M, Rota C, Remuzzi G. Mesenchymal stem cells in kidney repair[J]. Methods Mol Biol, 2016, 1416:89-107.
28
Rubio GA, Elliot SJ, Wikramanayake TC, et al. Mesenchymal stromal cells prevent bleomycin-induced lung and skin fibrosis in aged mice and restore wound healing[J]. J Cell Physiol, 2018, 233(8):5503-5512.
29
Guan X, Song L, Han F, et al. Mesenchymal stem cells protect cigarette smoke-damaged lung and pulmonary function partly via VEGF-VEGF receptors[J]. J Cell Biochem, 2013, 114(2):323-335.
30
Kennelly H, Mahon BP, English K. Human mesenchymal stromal cells exert HGF dependent cytoprotective effects in a human relevant pre-clinical model of COPD[J]. Sci Rep, 2016, 6(1):38207.
31
Bernard O, Jeny F, Uzunhan Y, et al. Mesenchymal stem cells reduce hypoxia-induced apoptosis in alveolar epithelial cells by modulating HIF and ROS hypoxic signaling[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 314(3):L360-L371.
32
Behnke J, Kremer S, Shahzad T, et al. MSC Based Therapies-New Perspectives for the injured lung[J]. J Clin Med, 2020, 9(3):682.
33
Naji A, Eitoku M, Favier B, et al. Biological functions of mesenchymal stem cells and clinical implications[J]. Cell Mol Life Sci, 2019, 76(17): 3323-3348.
34
Gao F, Chiu SM, Motan DAL, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects[J]. Cell Death Dis, 2016, 7(1):e2062.
35
Goodwin M, Sueblinvong V, Eisenhauer P, et al. Bone marrow-derived mesenchymal stromal cells inhibit Th2-Mediated allergic airways inflammation in mice[J]. Stem Cells, 2011, 29(7):1137-1148.
36
Park K, Svennerholm K, Shelke GV, et al. Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10[J]. Stem Cell Res Ther, 2019,10(1):231.
37
Li Y, Xu J, Shi W, et al. Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice[J]. Stem Cell Res Ther, 2016,7(1):159.
38
Zhu Y, Feng X, Abbott J, et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice[J]. Stem Cells, 2014, 32(1):116-125.
39
Li JW, Wei L, Han Z, et al. Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p[J]. Eur J Pharmacol, 2019, 852: 68-76.
40
Bari E, Ferrarotti I, Di Silvestre D, et al. Adipose mesenchymal extracellular vesicles as Alpha-1-Antitrypsin physiological delivery systems for lung regeneration[J]. Cells, 2019, 8(9):965.
41
Harrell CR, Jovicic N, Djonov V, et al. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases[J]. Cells, 2019, 8(12):1605.
42
Liu A, Zhang X, He H, et al. Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease[J]. Expert Opin Biol Ther, 2020, 20(2):125-140.
43
Matthay MA, Calfee CS, Zhuo H, et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial[J]. Lancet Respir Med, 2019, 7(2):154-162.
44
Chan MCW, Kuok DIT, Leung CYH, et al. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo[J]. Proc Natl Acad Sci U S A, 2016, 113(13):3621-3626.
45
Darwish I, Banner D, Mubareka S, et al. Mesenchymal stromal (stem) cell therapy fails to improve outcomes in experimental severe influenza[J]. PLoS One, 2013, 8(8):e71761.
46
Gotts J E, Abbott J, Matthay M A. Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307(5):L395-L406.
47
Chen J, Hu C, Chen L, et al. Clinical study of msc treating respiratory disttress syndrome induced by epidemic influenza a (H7N9)infection, a hint for covid-19 treatment[J]. Engineering (Beijing), 2020.DOI:10.1016/j.eng.2020.02.006. Online ahead of print.
48
Ntolios P, Manoloudi E, Tzouvelekis A, et al. Longitudinal outcomes of patients enrolled in a phase Ib clinical trial of the adipose-derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis[J]. Clin Respir J, 2018, 12(6):2084-2089.
49
Chambers DC, Enever D, Ilic N, et al. A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis[J]. Respirology, 2014, 19(7):1013-1018.
50
Stolk J, Broekman W, Mauad T, et al. A phase I study for intravenous autologous mesenchymal stromal cell administration to patients with severe emphysema[J]. QJM, 2016, 109(5):331-336.
51
Armitage J, Tan DBA, Troedson R, et al. Mesenchymal stromal cell infusion modulates systemic immunological responses in stable COPD patients: a phase I pilot study[J]. Eur Respir J, 2018, 51(3):1702369.
52
Liang B, Chen J, Li T, et al. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells[J]. ChinaXiv, 2020. DOI:10.12074/202002.00084.
53
Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 Pneumonia[J]. Aging Dis, 2020, 11(2):216-228.
54
Millar JE, von Bahr V, Malfertheiner MV, et al. Administration of mesenchymal stem cells during ECMO results in a rapid decline in oxygenator performance[J]. Thorax, 2019, 74(2):194-196.
55
Walczak P, Zhang J, Gilad AA, et al. Dual-Modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia[J]. Stroke, 2008, 39(5):1569-1574.
56
Loy H, Kuok DIT, Hui KPY, et al. Therapeutic implications of human umbilical cord mesenchymal stromal cells in attenuating influenza A(H5N1) Virus-associated acute lung injury[J]. J Infect Dis, 2019, 219(2):186-196.
57
Abreu SC, Weiss DJ, Rocco PR. Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases?[J]. Stem Cell Res Ther, 2016, 7(1):53.
[1] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[2] 李安琪, 徐祎琳, 向天新. 新型冠状病毒感染后肺纤维化病变诊治进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 294-298.
[3] 吴令杰, 陈瑞烈, 陈桂佳, 肖湘明, 林钟滨. 两例获得性免疫缺陷综合征合并新型冠状病毒感染者抗病毒治疗并文献复习[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 282-286.
[4] 朱名超, 朱娅, 郭飞波, 黄银娥. 新型冠状病毒感染诱导冷凝集现象对血常规参数的影响[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 244-251.
[5] 戚若晨, 马帅军, 韩士超, 王国辉, 刘克普, 张小燕, 杨晓剑, 秦卫军. 肾移植术后新型冠状病毒感染单中心诊疗经验[J]. 中华移植杂志(电子版), 2023, 17(04): 232-239.
[6] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[7] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[8] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[9] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[10] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[11] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
[15] 田丹阳, 刘小璇, 叶珊, 马新然, 樊东升, 傅瑜. 新型冠状病毒感染疫情对神经内科住院医师规范化培训的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 499-504.
阅读次数
全文


摘要