切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (04) : 246 -250. doi: 10.3877/cma.j.issn.2095-1221.2020.04.009

所属专题: 文献

综述

间充质干细胞外泌体的免疫调节功能及其在自身免疫炎性疾病中的应用
彭绪峰1   
  1. 1. 200062 上海交通大学附属儿童医院(上海市儿童医院)泌尿外科
  • 收稿日期:2019-12-29 出版日期:2020-08-01

Immunomodulatory properties of mesenchymal stem cell-derived exosomes and its application in autoimmune inflammatory diseases treatment

Xufeng Peng1   

  1. 1. Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
  • Received:2019-12-29 Published:2020-08-01
  • About author:
    Corresponding author: Chen Fang, Email:
引用本文:

彭绪峰. 间充质干细胞外泌体的免疫调节功能及其在自身免疫炎性疾病中的应用[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(04): 246-250.

Xufeng Peng. Immunomodulatory properties of mesenchymal stem cell-derived exosomes and its application in autoimmune inflammatory diseases treatment[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(04): 246-250.

间充质干细胞(MSCs)来源的外泌体携带了母细胞的生物活性物质,具有和MSCs相似的生物学功能。最新的研究表明,MSCs来源的外泌体能通过影响非特异性免疫和获得性免疫中的多种免疫细胞发挥免疫调控作用,并在多种自身免疫炎性疾病中展现出良好的应用前景。本文就其免疫调节功能及其在自身免疫炎性疾病应用中的研究进展做一综述,旨在为研究自身免疫炎性疾病的治疗提供新的思路。

Exosomes derived from mesenchymal stem cells (MSCs) carry bioactive substances of parental cells, which have similar biological functions to MSCs. The recent studies show that MSC-derived exosomes play an important role in immune regulation by influencing immune cells in nonspecific and acquired immunity, and have a promising future in treatment of different autoimmune inflammatory diseases. In this paper, the immunomodulatory properties of MSCs-derived exosomes and their application in autoimmune diseases are reviewed, providing novel insights for the treatment of autoimmune inflammatory diseases.

图1 外泌体的形成过程
表1 MSCs来源的外泌体在自身免疫炎性疾病中的研究进展
1
曲泽澎,贾兆锋,黄曦, 等. 间充质干细胞在器官移植中的应用研究进展[J]. 器官移植, 2018, 9(05):348-353.
2
Han Y, Li X, Zhang Y, et al. Mesenchymal stem cells for regenerative medicine[J]. Cells, 2019, 8(8):886.
3
Fu X, Liu G, Halim A, et al. Mesenchymal stem cell migration and tissue repair[J]. Cells, 2019, 8(7):784.
4
Guadix JA, Zugaza JL, Galvez-Martin P. Characteristics, applications and prospects of mesenchymal stem cells in cell therapy[J]. Med Clin (Barc), 2017, 148(9):408-414.
5
Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells[J]. Int J Mol Sci, 2014, 15(3):4142-4157.
6
Zhou Y, Yamamoto Y, Xiao Z, et al. The immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity[J]. J Clin Med, 2019, 8(7):1025.
7
Domenis R, Cifù A, Fabris M, et al. Clinical applications of microenvironment-controlled immunosuppressive properties of mesenchymal stem cells-derived exosomes: a review[J]. J Biol Regul Homeost Agents, 2018, 32(4 Suppl. 1):15-20.
8
Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of exosome composition[J]. Cell, 2019, 177(2): 428-445.
9
Yin K, Wang S, Zhao RC. Exosomes from mesenchymal stem/stromal cells: a new therapeutic paradigm[J]. Biomark Res, 2019, 7:8.
10
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release[J]. Cell Mol Life Sci, 2018,75(2):193-208.
11
Vidal M. Exosomes: revisiting their role as "garbage bags" [J]. Traffic, 2019, 20(11):815-828.
12
Hong P, Yang H, Wu Y, et al. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review[J]. Stem Cell Res Ther, 2019, 10(1):242.
13
Baharlooi H, Azimi M, Salehi Z, et al. Mesenchymal stem cell-derived exosomes: a promising therapeutic ace card to address autoimmune diseases[J]. Int J Stem Cells, 2020, 13(1):13-23.
14
Di Benedetto P, Ruscitti P, Vadasz Z, et al. Macrophages with regulatory functions, a possible new therapeutic perspective in autoimmune diseases[J]. Autoimmun Rev, 2019, 18(10):102369.
15
Murray PJ. Macrophage polarization[J]. Annu Rev Physiol, 2017, 79: 541-566.
16
Domenis R, Cifù A, Quaglia S, et al. Pro inflammatory stimuli enhance the immunosuppressive functions of adipose mesenchymal stem cells-derived exosomes[J]. Sci Rep, 2018, 8(1):13325.
17
Li X, Liu L, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates miR-181c attenuating burn-induced excessive inflammation[J]. EBio Medicine, 2016, 8:72-82.
18
Song Y, Dou H, Li X, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1beta-primed mesenchymal stem cells against sepsis[J]. Stem Cells, 2017, 35(5):1208-1221.
19
Zhao H, Shang Q, Pan Z, et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue[J]. Diabetes, 2018, 67(2):235-247.
20
Choucair K, Duff JR, Cassidy CS, et al. Natural killer cells: a Review of biology, therapeutic potential and challenges in treatment of solid tumors[J]. Future Oncol, 2019,15(26):3053-3069.
21
Liu W, Gao Y, Li H, et al. Intravenous transplantation of mesenchymal stromal cells has therapeutic effects in a sepsis mouse model through inhibition of septic natural killer cells[J]. Int J Biochem Cell Biol, 2016, 79:93-103.
22
Spaggiari GM, Capobianco A, Becchetti S, et al. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation[J]. Blood, 2006, 107(4):1484-1490.
23
Fan Y, Herr F, Vernochet A, et al. Human fetal liver mesenchymal stem cell-derived exosomes impair natural killer cell function[J]. Stem Cells Dev, 2019, 28(1):44-55.
24
Waisman A, Lukas D, Clausen BE, et al. Dendritic cells as gatekeepers of tolerance[J]. Semin Immunopathol, 2017, 39(2):153-163.
25
van den Berk LC, Jansen BJ, Snowden S, et al. Cord blood mesenchymal stem cells suppress DC-T Cell proliferation via prostaglandin B2[J]. Stem Cells Dev, 2014, 23(14):1582-1593.
26
Favaro E, Carpanetto A, Caorsi C, et al. Human mesenchymal stem cells and derived extracellular vesicles induce regulatory dendritic cells in type 1 diabetic patients[J]. Diabetologia, 2016, 59(2):325-333.
27
刘明,汪劲松,刘沐芸, 等. 人脐带间充质干细胞外泌体免疫调节功能的研究[J]. 中华医学杂志, 2015, 95(32):2630-2633.
28
郭礼妍,赖沛龙,耿素霞, 等. 人脐带间充质干细胞来源外泌体对Treg和TH17细胞的调节作用[J]. 中国实验血液学杂志, 2019, 27(1):221-226.
29
Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+ CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3[J]. J Exp Med, 2003, 198(12): 1875-1886.
30
Garín MI, Chu CC, Golshayan D, et al. Galectin-1: a key effector of regulation mediated by CD4+CD25+T cells[J]. Blood, 2007, 109(5): 2058-2065.
31
Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate B-cell functions[J]. Blood, 2006, 107(1):367-372.
32
Asari S, Itakura S, Ferreri K, et al. Mesenchymal stem cells suppress B-cell terminal differentiation[J]. Exp Hematol, 2009, 37(5):604-615.
33
Budoni M, Fierabracci A, Luciano R, et al. The immunosuppressive effect of mesenchymal stromal cells on B lymphocytes is mediated by membrane vesicles[J]. Cell Transplant, 2013, 22(2):369-379.
34
Zhang S, Teo KYW, Chuah SJ, et al. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis[J]. Biomaterials, 2019, 200:35-47.
35
Lai P, Chen X, Guo L, et al. A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD[J]. J Hematol Oncol, 2018, 11(1):135.
36
Shigemoto-Kuroda T, Oh JY, Kim DK, et al. MSC-derived extracellular vesicles attenuate immune responses in two autoimmune murine models: type 1 diabetes and uveoretinitis[J]. Stem Cell Reports, 2017, 8(5):1214-1225.
37
Du YM, Zhuansun YX, Chen R, et al. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma[J]. Exp Cell Res, 2018, 363(1):114-120.
38
Zhang B, Yin Y, Lai RC, et al. Mesenchymal stem cells secrete immunologically active exosomes[J]. Stem Cells Dev, 2014, 23(11): 1233-1244.
[1] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[2] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[3] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[4] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[5] 纪文鑫, 王茂, 邱春丽, 李尚鹏, 代引海. 血清外泌体circ PVT1与circ 0014606在三阴性乳腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 267-271.
[6] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[7] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[8] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[9] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[10] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[11] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[12] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[13] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[14] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要