切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (04) : 251 -256. doi: 10.3877/cma.j.issn.2095-1221.2020.04.010

所属专题: 文献

综述

嵌合抗原受体T细胞免疫疗法的研究进展
罗宇希1, 李菲菲2, 刘康3,(), 何治尧4   
  1. 1. 230032 合肥,安徽医科大学第一临床医学院;637000 南充,四川省南充市中心医院(川北医学院第二临床学院)组织工程与干细胞研究所肿瘤生物治疗南充市重点实验室
    2. 230032 合肥,安徽医科大学基础医学院病理生理学教研室
    3. 637000 南充,四川省南充市中心医院(川北医学院第二临床学院)组织工程与干细胞研究所肿瘤生物治疗南充市重点实验室
    4. 610041 成都,四川大学华西医院临床药学部
  • 收稿日期:2020-03-26 出版日期:2020-08-01
  • 通信作者: 刘康
  • 基金资助:
    国家级大学生创新创业训练项目(202010366031); 四川省科技计划项目(2018SZ0377,2018JY0219); 南充市市校合作科研专项(NSMC20170460); 四川省卫生健康委员会科研课题(19PJ057)

Research advances in chimeric antigen receptor-modified T cells therapy

Yuxi Luo1, Feifei Li2, Kang Liu3,(), Zhiyao He4   

  1. 1. the First Clinical College of Anhui Medical University, Hefei 230032, China; Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, the Second Clinical Medical College of North Sichuan Medical College, Cancer Biotherapy Key Laboratory of Nanchong, Nanchong 637000, China
    2. Department of Pathophysiology, Anhui Medical University, Hefei 230032, China
    3. Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, the Second Clinical Medical College of North Sichuan Medical College, Cancer Biotherapy Key Laboratory of Nanchong, Nanchong 637000, China
    4. Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
  • Received:2020-03-26 Published:2020-08-01
  • Corresponding author: Kang Liu
  • About author:
    Corresponding author: Liu Kang, Email:
引用本文:

罗宇希, 李菲菲, 刘康, 何治尧. 嵌合抗原受体T细胞免疫疗法的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(04): 251-256.

Yuxi Luo, Feifei Li, Kang Liu, Zhiyao He. Research advances in chimeric antigen receptor-modified T cells therapy[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(04): 251-256.

嵌合抗原受体T (CAR-T)细胞是经基因工程修饰后表达靶向肿瘤细胞CAR分子的T细胞。CAR-T细胞治疗在血液肿瘤治疗中展现了显著的疗效而备受关注,是一种新的肿瘤免疫疗法。目前,CAR-T细胞治疗在实体瘤治疗中还面临着很大的挑战。而且,在临床应用的过程中仍会出现一些不良反应,如细胞因子释放综合征、神经毒性、归巢障碍、溶瘤综合征及脱靶效应等。本文就CAR-T疗法的基本原理及临床应用与不良反应展开做一综述。

Chimeric antigen receptor-modified T (CAR-T) cells are genetically engineered T cells to express CAR molecules targeting specific surface antigens on tumor cells. CAR-T cell therapy, a novel cancer immunotherapy, has attracted much attention since it had exhibited dramatic efficacy in the treatment of hematological tumors in clinic. At present, CAR-T cell therapy still faces great challenges in the treatment of solid tumors. Furthermore, some side effects can be found in the clinical application, such as cytokine release syndrome, neurotoxicity, homing disorder, tumor lysis syndrome and on target off tumor toxicity. This review will focus on some main aspects about CAR-T cells, including the principle, clinical application and adverse events of this therapy.

图1 CAR的结构示意图
1
Panagopoulou TI, Rafiq QA. CAR-T immunotherapies: Biotechnological strategies to improve safety, efficacy and clinical outcome through CAR engineering[J]. Biotechnol Adv, 2019, 37(7): 107411.
2
Tan S, Li D, Zhu X. Cancer immunotherapy: Pros, cons and beyond[J]. Biomed Pharmacother, 2020,124:109821.
3
MacKay M, Afshinnekoo E, Rub J, et al. The therapeutic landscape for cells engineered with chimeric antigen receptors[J]. Nat Biotechnol, 2020, 38(2):233-244.
4
Yáñez L, Sánchez-Escamilla M, Perales MA. CAR T Cell Toxicity: current management and future directions[J]. Hemasphere, 2019, 3(2):e186.
5
Ma CC, Wang ZL, Xu T, et al. The approved gene therapy drugs worldwide: from 1998 to 2019[J]. Biotechnol Adv, 2020,40:107502.
6
Dai X, Mei Y, Cai D, et al. Standardizing CAR-T therapy: Getting it scaled up[J]. Biotechnol Adv, 2019, 37(1):239-245.
7
Huang X, Yang Y. Driving an improved CAR for cancer immunotherapy[J]. J Clin Invest, 2016, 126(8):2795-2798.
8
Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward[J]. Nat Rev Clin Oncol, 2016, 13(6):370-383.
9
Depil S, Duchateau P, Grupp SA, et al. 'Off-the-shelf' allogeneic CAR T cells: development and challenges[J]. Nat Rev Drug Discov, 2020, 19(3):185-199.
10
Schmidts A, Maus MV. Making CAR T cells a solid option for solid tumors[J]. Front Immunol, 2018, 9:2593.
11
Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs[J]. Expert Opin Biol Ther, 2015, 15(8):1145-1154.
12
Li D, Li X, Zhou WL, et al. Genetically engineered T cells for cancer immunotherapy[J]. Signal Transduct Target Ther, 2019, 4:35.
13
Schubert ML, Hückelhoven A, Hoffmann JM, et al. Chimeric antigen receptor T cell therapy targeting CD19-positive leukemia and lymphoma in the context of stem cell transplantation[J]. Hum Gene Ther, 2016, 27(10):758-771.
14
Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy[J]. Nat Med, 2018, 24(1):20-28.
15
Qin H, Edwards JP, Zaritskaya L, et al. Chimeric antigen receptors incorporating D domains targeting CD123 direct potent mono- and bi-specific antitumor activity of T cells[J]. MolTher, 2019, 27(7):1262-1274.
16
Liu J, Tan X, Ma YY, et al. Study on the prognostic value of aberrant antigen in patients with acute B lymphocytic leukemia[J]. Clin Lymphoma Myeloma Leuk, 2019, 19(7):e349-e358.
17
Borot F, Wang H, Ma Y, et al. Gene-edited stem cells enable CD33-directed immune therapy for myeloid malignancies[J]. Proc Natl Acad Sci U S A, 2019, 116(24):11978-11987.
18
Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia[J]. Sci Transl Med, 2015, 7(303):303ra139.
19
Xu J, Chen LJ, Yang SS, et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma[J]. Proc Natl Acad Sci U S A, 2019, 116(19):9543-9551.
20
Morandi F, Horenstein AL, Costa F, et al. CD38: A target for immunotherapeutic approaches in multiple myeloma[J]. Front Immunol, 2018, 9:2722.
21
Vasuthasawat A, Yoo EM, Trinh KR, et al. Targeted immunotherapy using anti-CD138-interferon α fusion proteins and bortezomib results in synergistic protection against multiple myeloma[J]. MAbs, 2016, 8(7):1386-1397.
22
Dumoulin DW, Aerts JG, Cornelissen R. Is immunotherapy a viable option in treating mesothelioma?[J]. Future Oncol, 2017, 13(20):1747-1750.
23
McGowan E, Lin Q, Ma G, et al. PD-1 disrupted CAR-T cells in the treatment of solid tumors: Promises and challenges[J]. Biomed Pharmacother, 2020, 121:109625.
24
Zhang E, Gu J, Xu H. Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors[J]. Mol Cancer, 2018, 17(1):7.
25
Xia AL, Wang XC, Lu YJ, et al. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities[J]. Oncotarget, 2017, 8(52):90521-90531.
26
Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes[J]. Science, 2013, 339(6127):1546-1558.
27
Chevolet I, Speeckaert R, Schreuer M, et al. Characterization of the in vivo immune network of IDO, tryptophan metabolism, PD-L1, and CTLA-4 in circulating immune cells in melanoma[J]. Oncoimmunology, 2015, 4(3):e982382.
28
Sun M, Shi H, Liu C, et al. Construction and evaluation of a novel humanized HER2-specific chimeric receptor[J]. Breast Cancer Res, 2014, 16(3):R61.
29
Gao H, Li K, Tu H, et al. Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma[J]. Clin Cancer Res, 2014, 20(24):6418-6428.
30
Li D, Li N, Zhang YF, et al. Persistent polyfunctional chimeric antigen receptor T cells that target glypican 3 eliminate orthotopic hepatocellular carcinomas in mice[J]. Gastroenterology, 2020, 158(8): 2250-2265.
31
Liu Y, Di S, Shi B, et al. Armored inducible expression of IL-12 enhances antitumor activity of glypican-3-targeted chimeric antigen receptor-engineered T cells in hepatocellular carcinoma[J]. J Immunol, 2019, 203(1):198-207.
32
Wei X, Lai Y, Li J, et al. PSCA and MUC1 in non-small-cell lung cancer as targets of chimeric antigen receptor T cells[J]. Oncoimmunology, 2017, 6(3):e1284722.
33
Sotoudeh M, Shirvani SI, Merat S, et al. MSLN (Mesothelin), ANTXR1 (TEM8), and MUC3A are the potent antigenic targets for CAR T cell therapy of gastric adenocarcinoma[J]. J Cell Biochem, 2019, 120(4):5010-5017.
34
Zeng C, Cheng J, Li T, et al. Efficacy and toxicity for CD22/CD19 chimeric antigen receptor T-cell therapy in patients with relapsed/refractory aggressive B-cell lymphoma involving the gastrointestinal tract[J]. Cytotherapy, 2020, 22(3):166-171.
35
Zhu H, You Y, Shen Z, et al. EGFRv Ⅲ-CAR-T cells with PD-1 knockout have improved anti-glioma activity[J]. Pathol Oncol Res, 2020. doi: 10.1007/s12253-019-00759-1.
36
Zhang BL, Li D, Gong YL, et al. Preclinical evaluation of chimeric antigen receptor-modified T cells specific to epithelial cell adhesion molecule for treating colorectal cancer[J]. Hum Gene Ther, 2019, 30(4):402-412.
37
Liu K, Song G, Zhang X, et al. PTK7 is a novel oncogenic target for esophageal squamous cell carcinoma[J]. World J Surg Oncol, 2017, 15(1): 105.
38
Gutgarts V, Jain T, Zheng J, et al. Acute kidney injury after CAR-T cell therapy: Low incidence and rapid recovery[J]. Biol Blood Marrow Transplant, 2020, 26(6):1071-1076.
39
Aldoss I, Khaled SK, Budde E, et al. Cytokine release syndrome with the novel treatments of acute lymphoblastic leukemia: pathophysiology, prevention, and treatment[J]. Curr Oncol Rep, 2019, 21(1):4.
40
Riegler LL, Jones GP, Lee DW. Current approaches in the grading and management of cytokine release syndrome after chimeric antigen receptor T-cell therapy[J]. Ther Clin Risk Manag, 2019, 15:323-335.
41
Shimabukuro-Vornhagen A, Gödel P, Subklewe M, et al. Cytokine release syndrome[J]. J Immunother Cancer, 2018, 6(1):56.
42
Wang Y, Qi K, Cheng H, et al. Coagulation disorders after chimeric antigen receptor T cell therapy: Analysis of 100 patients with relapsed and refractory hematologic malignancies[J]. Biol Blood Marrow Transplant, 2020, 26(5):865-875.
43
Chou CK, Turtle CJ. Assessment and management of cytokine release syndrome and neurotoxicity following CD19 CAR-T cell therapy[J]. Expert Opin Biol Ther, 2020, 20(6):653-664.
44
Thakar MS, Kearl TJ, Malarkannan S. Controlling cytokine release syndrome to harness the full potential of CAR-Based cellular therapy[J]. Front Oncol, 2020, 9:1529.
45
Acharya UH, Dhawale T, Yun S, et al. Management of cytokine release syndrome and neurotoxicity in chimeric antigen receptor (CAR) T cell therapy[J]. Expert Rev Hematol, 2019, 12(3):195-205.
46
Liu D, Zhao J. Cytokine release syndrome: grading, modeling, and new therapy[J]. J Hematol Oncol, 2018, 11(1):121.
47
Gödel P, Shimabukuro-Vornhagen A, von Bergwelt-Baildon M. Understanding cytokine release syndrome[J]. Intensive Care Med, 2018, 44(3):371-373.
48
Alvi RM, Frigault MJ, Fradley MG, et al. Cardiovascular events among adults treated with chimeric antigen receptor T-cells (CAR-T)[J]. J Am Coll Cardiol, 2019, 74(25):3099-3108.
49
Gauthier J, Hirayama AV, Purushe J, et al. Feasibility and efficacy of CD19-targeted CAR-T cells with concurrent ibrutinib for CLL after ibrutinib failure[J]. Blood, 2020, 135(19):1650-1660.
50
Tu S, Zhou X, Guo Z, et al. CD19 and CD70 dual-target chimeric antigen receptor T-cell therapy for the treatment of relapsed and refractory primary central nervous system diffuse large B-cell lymphoma[J]. Front Oncol, 2019, 9:1350.
51
Shen D, Song H, Xu X, et al. Chimeric antigen receptor T cell therapy can be administered safely under the real-time monitoring of Th1/Th2 cytokine pattern using the cytometric bead array technology for relapsed and refractory acute lymphoblastic leukemia in children[J]. Pediatr Hematol Oncol, 2020, 37(4):288-299.
52
Rivera AM, May S, Lei M, et al. CAR T-cell-associated neurotoxicity: Current management and emerging treatment strategies[J]. Crit Care Nurs Q, 2020, 43(2):191-204.
53
Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity[J]. CA Cancer J Clin, 2020, 70(2):86-104.
54
Turtle CJ, Hay KA, Hanafi LA, et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib[J]. J Clin Oncol, 2017, 35(26):3010-3020.
55
Karschnia P, Jordan JT, Forst DA, et al. Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells[J]. Blood, 2019, 133(20):2212-2221.
56
Santomasso BD, Park JH, Salloum D, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia[J]. Cancer Discov, 2018, 8(8):958-971.
57
Oved JH, Barrett DM, Teachey DT. Cellular therapy: Immune-related complications[J]. Immunol Rev, 2019, 290(1):114-126.
58
Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial[J]. Lancet, 2015, 385(9967):517-528.
59
Katz SC, Burga RA, McCormack E, et al. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases[J]. Clin Cancer Res, 2015, 21(14):3149-3159.
60
Adachi K, Kano Y, Nagai T, et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor[J]. Nat Biotechnol, 2018, 36(4):346-351.
61
Alanio C, Barreira da Silva R, Michonneau D, et al. CXCR3/CXCL10 axis shapes tissue distribution of memory phenotype CD8(+) T cells in nonimmunized mice[J]. J Immunol, 2018, 200(1): 139-146.
62
Takebe T, Sakamoto K, Higami Y, et al. A novel mouse model for tracking the fate of CXCR5-expressing T cells[J]. Biochem Biophys Res Commun, 2018, 495(2): 1642-1647.
63
Jeyanathan M, Afkhami S, Khera A, et al. CXCR3 signaling is required for restricted homing of parenteral tuberculosis vaccine-induced T cells to both the lung parenchyma and airway[J]. J Immunol, 2017, 199(7): 2555-2569.
64
Chheda ZS, Sharma RK, Jala VR, et al, Haribabu B. Chemoattractant receptors BLT1 and CXCR3 regulate antitumor immunity by facilitating CD8+ T cell migration into tumors[J]. J Immunol, 2016, 197(5): 2016-2026.
65
Siddiqui I, Erreni M, van Brakel M, et al. Enhanced recruitment of genetically modified CX3CR1-positive human T cells into Fractalkine/CX3CL1 expressing tumors: importance of the chemokine gradient[J]. J Immunother Cancer, 2016, 4: 21.
66
Gunassekaran GR, Hong CM, Vadevoo SMP, et al. Non-genetic engineering of cytotoxic T cells to target IL-4 receptor enhances tumor homing and therapeutic efficacy against melanoma[J]. Biomaterials, 2018, 159:161-173.
67
Gupta A, Moore JA. Tumor lysis syndrome[J]. JAMA Oncol, 2018, 4(6):895.
68
Feldmann A, Arndt C, Koristka S, et al. Conventional CARs versus modular CARs[J]. Cancer Immunol Immunother, 2019, 68(10):1713-1719.
69
Neelapu SS. Managing the toxicities of CAR-T cell therapy[J]. Hematol Oncol, 2019, Suppl 1:48-52.
70
Yu S, Yi M, Qin S, et al. Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity[J]. Mol Cancer, 2019, 18(1):125.
71
Akbari P, Huijbers EJM, Themeli M, et al. The tumor vasculature an attractive CAR T cell target in solid tumors[J]. Angiogenesis, 2019, 22(4):473-475.
72
Morgan RA, Yang JC, Kitano M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2[J]. Mol Ther, 2010, 18(4):843-851.
73
Gargett T, Brown MP. The inducible caspase-9 suicide gene system as a "safety switch" to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells[J]. Front Pharmacol, 2014, 5:235.
74
Kloss CC, Condomines M, Cartellieri M, et al. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells[J]. Nat Biotechnol, 2013, 31(1):71-75.
75
Zhao J, Lin Q, Song Y, et al. Universal CARs, universal T cells, and universal CAR T cells[J]. J Hematol Oncol, 2018, 11(1):132.
[1] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[4] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[5] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[6] 杜晓辉, 崔建新. 腹腔镜右半结肠癌D3根治术淋巴结清扫范围与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 5-8.
[7] 周岩冰, 刘晓东. 腹腔镜右半结肠癌D3根治术消化道吻合重建方式的选择[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 9-13.
[8] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[9] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[10] 张焱辉, 张蛟, 朱志贤. 留置肛管在中低位直肠癌新辅助放化疗后腹腔镜TME术中的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 25-28.
[11] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[12] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[13] 燕速, 霍博文, 徐惠宁. 4K荧光腹腔镜扩大右半结肠CME+D3根治术及No.206、No.204组淋巴结清扫术[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 14-14.
[14] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[15] 徐军, 姬园园, 陈君平, 王健. 伴菊形团结构的脑膜瘤合并颅骨侵犯一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 916-919.
阅读次数
全文


摘要