1 |
Panagopoulou TI, Rafiq QA. CAR-T immunotherapies: Biotechnological strategies to improve safety, efficacy and clinical outcome through CAR engineering[J]. Biotechnol Adv, 2019, 37(7): 107411.
|
2 |
Tan S, Li D, Zhu X. Cancer immunotherapy: Pros, cons and beyond[J]. Biomed Pharmacother, 2020,124:109821.
|
3 |
MacKay M, Afshinnekoo E, Rub J, et al. The therapeutic landscape for cells engineered with chimeric antigen receptors[J]. Nat Biotechnol, 2020, 38(2):233-244.
|
4 |
Yáñez L, Sánchez-Escamilla M, Perales MA. CAR T Cell Toxicity: current management and future directions[J]. Hemasphere, 2019, 3(2):e186.
|
5 |
Ma CC, Wang ZL, Xu T, et al. The approved gene therapy drugs worldwide: from 1998 to 2019[J]. Biotechnol Adv, 2020,40:107502.
|
6 |
Dai X, Mei Y, Cai D, et al. Standardizing CAR-T therapy: Getting it scaled up[J]. Biotechnol Adv, 2019, 37(1):239-245.
|
7 |
Huang X, Yang Y. Driving an improved CAR for cancer immunotherapy[J]. J Clin Invest, 2016, 126(8):2795-2798.
|
8 |
Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward[J]. Nat Rev Clin Oncol, 2016, 13(6):370-383.
|
9 |
Depil S, Duchateau P, Grupp SA, et al. 'Off-the-shelf' allogeneic CAR T cells: development and challenges[J]. Nat Rev Drug Discov, 2020, 19(3):185-199.
|
10 |
Schmidts A, Maus MV. Making CAR T cells a solid option for solid tumors[J]. Front Immunol, 2018, 9:2593.
|
11 |
Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs[J]. Expert Opin Biol Ther, 2015, 15(8):1145-1154.
|
12 |
Li D, Li X, Zhou WL, et al. Genetically engineered T cells for cancer immunotherapy[J]. Signal Transduct Target Ther, 2019, 4:35.
|
13 |
Schubert ML, Hückelhoven A, Hoffmann JM, et al. Chimeric antigen receptor T cell therapy targeting CD19-positive leukemia and lymphoma in the context of stem cell transplantation[J]. Hum Gene Ther, 2016, 27(10):758-771.
|
14 |
Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy[J]. Nat Med, 2018, 24(1):20-28.
|
15 |
Qin H, Edwards JP, Zaritskaya L, et al. Chimeric antigen receptors incorporating D domains targeting CD123 direct potent mono- and bi-specific antitumor activity of T cells[J]. MolTher, 2019, 27(7):1262-1274.
|
16 |
Liu J, Tan X, Ma YY, et al. Study on the prognostic value of aberrant antigen in patients with acute B lymphocytic leukemia[J]. Clin Lymphoma Myeloma Leuk, 2019, 19(7):e349-e358.
|
17 |
Borot F, Wang H, Ma Y, et al. Gene-edited stem cells enable CD33-directed immune therapy for myeloid malignancies[J]. Proc Natl Acad Sci U S A, 2019, 116(24):11978-11987.
|
18 |
Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia[J]. Sci Transl Med, 2015, 7(303):303ra139.
|
19 |
Xu J, Chen LJ, Yang SS, et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma[J]. Proc Natl Acad Sci U S A, 2019, 116(19):9543-9551.
|
20 |
Morandi F, Horenstein AL, Costa F, et al. CD38: A target for immunotherapeutic approaches in multiple myeloma[J]. Front Immunol, 2018, 9:2722.
|
21 |
Vasuthasawat A, Yoo EM, Trinh KR, et al. Targeted immunotherapy using anti-CD138-interferon α fusion proteins and bortezomib results in synergistic protection against multiple myeloma[J]. MAbs, 2016, 8(7):1386-1397.
|
22 |
Dumoulin DW, Aerts JG, Cornelissen R. Is immunotherapy a viable option in treating mesothelioma?[J]. Future Oncol, 2017, 13(20):1747-1750.
|
23 |
McGowan E, Lin Q, Ma G, et al. PD-1 disrupted CAR-T cells in the treatment of solid tumors: Promises and challenges[J]. Biomed Pharmacother, 2020, 121:109625.
|
24 |
Zhang E, Gu J, Xu H. Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors[J]. Mol Cancer, 2018, 17(1):7.
|
25 |
Xia AL, Wang XC, Lu YJ, et al. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities[J]. Oncotarget, 2017, 8(52):90521-90531.
|
26 |
Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes[J]. Science, 2013, 339(6127):1546-1558.
|
27 |
Chevolet I, Speeckaert R, Schreuer M, et al. Characterization of the in vivo immune network of IDO, tryptophan metabolism, PD-L1, and CTLA-4 in circulating immune cells in melanoma[J]. Oncoimmunology, 2015, 4(3):e982382.
|
28 |
Sun M, Shi H, Liu C, et al. Construction and evaluation of a novel humanized HER2-specific chimeric receptor[J]. Breast Cancer Res, 2014, 16(3):R61.
|
29 |
Gao H, Li K, Tu H, et al. Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma[J]. Clin Cancer Res, 2014, 20(24):6418-6428.
|
30 |
Li D, Li N, Zhang YF, et al. Persistent polyfunctional chimeric antigen receptor T cells that target glypican 3 eliminate orthotopic hepatocellular carcinomas in mice[J]. Gastroenterology, 2020, 158(8): 2250-2265.
|
31 |
Liu Y, Di S, Shi B, et al. Armored inducible expression of IL-12 enhances antitumor activity of glypican-3-targeted chimeric antigen receptor-engineered T cells in hepatocellular carcinoma[J]. J Immunol, 2019, 203(1):198-207.
|
32 |
Wei X, Lai Y, Li J, et al. PSCA and MUC1 in non-small-cell lung cancer as targets of chimeric antigen receptor T cells[J]. Oncoimmunology, 2017, 6(3):e1284722.
|
33 |
Sotoudeh M, Shirvani SI, Merat S, et al. MSLN (Mesothelin), ANTXR1 (TEM8), and MUC3A are the potent antigenic targets for CAR T cell therapy of gastric adenocarcinoma[J]. J Cell Biochem, 2019, 120(4):5010-5017.
|
34 |
Zeng C, Cheng J, Li T, et al. Efficacy and toxicity for CD22/CD19 chimeric antigen receptor T-cell therapy in patients with relapsed/refractory aggressive B-cell lymphoma involving the gastrointestinal tract[J]. Cytotherapy, 2020, 22(3):166-171.
|
35 |
Zhu H, You Y, Shen Z, et al. EGFRv Ⅲ-CAR-T cells with PD-1 knockout have improved anti-glioma activity[J]. Pathol Oncol Res, 2020. doi: 10.1007/s12253-019-00759-1.
|
36 |
Zhang BL, Li D, Gong YL, et al. Preclinical evaluation of chimeric antigen receptor-modified T cells specific to epithelial cell adhesion molecule for treating colorectal cancer[J]. Hum Gene Ther, 2019, 30(4):402-412.
|
37 |
Liu K, Song G, Zhang X, et al. PTK7 is a novel oncogenic target for esophageal squamous cell carcinoma[J]. World J Surg Oncol, 2017, 15(1): 105.
|
38 |
Gutgarts V, Jain T, Zheng J, et al. Acute kidney injury after CAR-T cell therapy: Low incidence and rapid recovery[J]. Biol Blood Marrow Transplant, 2020, 26(6):1071-1076.
|
39 |
Aldoss I, Khaled SK, Budde E, et al. Cytokine release syndrome with the novel treatments of acute lymphoblastic leukemia: pathophysiology, prevention, and treatment[J]. Curr Oncol Rep, 2019, 21(1):4.
|
40 |
Riegler LL, Jones GP, Lee DW. Current approaches in the grading and management of cytokine release syndrome after chimeric antigen receptor T-cell therapy[J]. Ther Clin Risk Manag, 2019, 15:323-335.
|
41 |
Shimabukuro-Vornhagen A, Gödel P, Subklewe M, et al. Cytokine release syndrome[J]. J Immunother Cancer, 2018, 6(1):56.
|
42 |
Wang Y, Qi K, Cheng H, et al. Coagulation disorders after chimeric antigen receptor T cell therapy: Analysis of 100 patients with relapsed and refractory hematologic malignancies[J]. Biol Blood Marrow Transplant, 2020, 26(5):865-875.
|
43 |
Chou CK, Turtle CJ. Assessment and management of cytokine release syndrome and neurotoxicity following CD19 CAR-T cell therapy[J]. Expert Opin Biol Ther, 2020, 20(6):653-664.
|
44 |
Thakar MS, Kearl TJ, Malarkannan S. Controlling cytokine release syndrome to harness the full potential of CAR-Based cellular therapy[J]. Front Oncol, 2020, 9:1529.
|
45 |
Acharya UH, Dhawale T, Yun S, et al. Management of cytokine release syndrome and neurotoxicity in chimeric antigen receptor (CAR) T cell therapy[J]. Expert Rev Hematol, 2019, 12(3):195-205.
|
46 |
Liu D, Zhao J. Cytokine release syndrome: grading, modeling, and new therapy[J]. J Hematol Oncol, 2018, 11(1):121.
|
47 |
Gödel P, Shimabukuro-Vornhagen A, von Bergwelt-Baildon M. Understanding cytokine release syndrome[J]. Intensive Care Med, 2018, 44(3):371-373.
|
48 |
Alvi RM, Frigault MJ, Fradley MG, et al. Cardiovascular events among adults treated with chimeric antigen receptor T-cells (CAR-T)[J]. J Am Coll Cardiol, 2019, 74(25):3099-3108.
|
49 |
Gauthier J, Hirayama AV, Purushe J, et al. Feasibility and efficacy of CD19-targeted CAR-T cells with concurrent ibrutinib for CLL after ibrutinib failure[J]. Blood, 2020, 135(19):1650-1660.
|
50 |
Tu S, Zhou X, Guo Z, et al. CD19 and CD70 dual-target chimeric antigen receptor T-cell therapy for the treatment of relapsed and refractory primary central nervous system diffuse large B-cell lymphoma[J]. Front Oncol, 2019, 9:1350.
|
51 |
Shen D, Song H, Xu X, et al. Chimeric antigen receptor T cell therapy can be administered safely under the real-time monitoring of Th1/Th2 cytokine pattern using the cytometric bead array technology for relapsed and refractory acute lymphoblastic leukemia in children[J]. Pediatr Hematol Oncol, 2020, 37(4):288-299.
|
52 |
Rivera AM, May S, Lei M, et al. CAR T-cell-associated neurotoxicity: Current management and emerging treatment strategies[J]. Crit Care Nurs Q, 2020, 43(2):191-204.
|
53 |
Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity[J]. CA Cancer J Clin, 2020, 70(2):86-104.
|
54 |
Turtle CJ, Hay KA, Hanafi LA, et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib[J]. J Clin Oncol, 2017, 35(26):3010-3020.
|
55 |
Karschnia P, Jordan JT, Forst DA, et al. Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells[J]. Blood, 2019, 133(20):2212-2221.
|
56 |
Santomasso BD, Park JH, Salloum D, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia[J]. Cancer Discov, 2018, 8(8):958-971.
|
57 |
Oved JH, Barrett DM, Teachey DT. Cellular therapy: Immune-related complications[J]. Immunol Rev, 2019, 290(1):114-126.
|
58 |
Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial[J]. Lancet, 2015, 385(9967):517-528.
|
59 |
Katz SC, Burga RA, McCormack E, et al. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases[J]. Clin Cancer Res, 2015, 21(14):3149-3159.
|
60 |
Adachi K, Kano Y, Nagai T, et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor[J]. Nat Biotechnol, 2018, 36(4):346-351.
|
61 |
Alanio C, Barreira da Silva R, Michonneau D, et al. CXCR3/CXCL10 axis shapes tissue distribution of memory phenotype CD8(+) T cells in nonimmunized mice[J]. J Immunol, 2018, 200(1): 139-146.
|
62 |
Takebe T, Sakamoto K, Higami Y, et al. A novel mouse model for tracking the fate of CXCR5-expressing T cells[J]. Biochem Biophys Res Commun, 2018, 495(2): 1642-1647.
|
63 |
Jeyanathan M, Afkhami S, Khera A, et al. CXCR3 signaling is required for restricted homing of parenteral tuberculosis vaccine-induced T cells to both the lung parenchyma and airway[J]. J Immunol, 2017, 199(7): 2555-2569.
|
64 |
Chheda ZS, Sharma RK, Jala VR, et al, Haribabu B. Chemoattractant receptors BLT1 and CXCR3 regulate antitumor immunity by facilitating CD8+ T cell migration into tumors[J]. J Immunol, 2016, 197(5): 2016-2026.
|
65 |
Siddiqui I, Erreni M, van Brakel M, et al. Enhanced recruitment of genetically modified CX3CR1-positive human T cells into Fractalkine/CX3CL1 expressing tumors: importance of the chemokine gradient[J]. J Immunother Cancer, 2016, 4: 21.
|
66 |
Gunassekaran GR, Hong CM, Vadevoo SMP, et al. Non-genetic engineering of cytotoxic T cells to target IL-4 receptor enhances tumor homing and therapeutic efficacy against melanoma[J]. Biomaterials, 2018, 159:161-173.
|
67 |
Gupta A, Moore JA. Tumor lysis syndrome[J]. JAMA Oncol, 2018, 4(6):895.
|
68 |
Feldmann A, Arndt C, Koristka S, et al. Conventional CARs versus modular CARs[J]. Cancer Immunol Immunother, 2019, 68(10):1713-1719.
|
69 |
Neelapu SS. Managing the toxicities of CAR-T cell therapy[J]. Hematol Oncol, 2019, Suppl 1:48-52.
|
70 |
Yu S, Yi M, Qin S, et al. Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity[J]. Mol Cancer, 2019, 18(1):125.
|
71 |
Akbari P, Huijbers EJM, Themeli M, et al. The tumor vasculature an attractive CAR T cell target in solid tumors[J]. Angiogenesis, 2019, 22(4):473-475.
|
72 |
Morgan RA, Yang JC, Kitano M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2[J]. Mol Ther, 2010, 18(4):843-851.
|
73 |
Gargett T, Brown MP. The inducible caspase-9 suicide gene system as a "safety switch" to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells[J]. Front Pharmacol, 2014, 5:235.
|
74 |
Kloss CC, Condomines M, Cartellieri M, et al. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells[J]. Nat Biotechnol, 2013, 31(1):71-75.
|
75 |
Zhao J, Lin Q, Song Y, et al. Universal CARs, universal T cells, and universal CAR T cells[J]. J Hematol Oncol, 2018, 11(1):132.
|