切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (04) : 229 -233. doi: 10.3877/cma.j.issn.2095-1221.2020.04.006

所属专题: 文献

综述

间充质干细胞对新型冠状病毒肺炎免疫损伤潜在修复作用的研究进展
马瑞琪1, 吴涛2, 赵秀华3, 张久聪4, 于晓辉4, 张茜2,()   
  1. 1. 730000 兰州,甘肃中医药大学临床医学院
    2. 730000 兰州,解放军联勤保障部队第九四〇医院血液科
    3. 西部战区疾病预防控制中心
    4. 730000 兰州,解放军联勤保障部队第九四〇医院消化科
  • 收稿日期:2020-04-15 出版日期:2020-08-01
  • 通信作者: 张茜
  • 基金资助:
    火神山医院科研面上课题(HSSYYKYMSKT-223)

Advances in the potential repairment of novel coronavirus-induced immune injury by mesenchymal stem cells

Ruiqi Ma1, Tao Wu2, Xiuhua Zhao3, Jiucong Zhang4, Xiaohui Yu4, Qian Zhang2,()   

  1. 1. Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
    2. Department of Hematology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730000, China
    3. Western Theater Center for Disease Control and Prevention, Lanzhou 730000, China
    4. Department of Gastroenterology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730000, China
  • Received:2020-04-15 Published:2020-08-01
  • Corresponding author: Qian Zhang
  • About author:
    Corresponding author:Zhang Qian, Email:
引用本文:

马瑞琪, 吴涛, 赵秀华, 张久聪, 于晓辉, 张茜. 间充质干细胞对新型冠状病毒肺炎免疫损伤潜在修复作用的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(04): 229-233.

Ruiqi Ma, Tao Wu, Xiuhua Zhao, Jiucong Zhang, Xiaohui Yu, Qian Zhang. Advances in the potential repairment of novel coronavirus-induced immune injury by mesenchymal stem cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(04): 229-233.

针对新型冠状病毒肆虐以及暂无特效药物治疗的情况,多地已开展间充质干细胞(MSCs)在新型冠状病毒感染重症救治方面的临床研究,在规范应用的前提下,经过严格的临床检验后,对若干重型患者进行治疗并取得了一定效果。MSCs能抑制免疫系统过度激活,通过改善微环境促进内源性修复、抑制肺部炎症的进展达到缓解呼吸窘迫症状的目的。本文就新型冠状病毒免疫损伤的发生机制、治疗现状以及MSCs在治疗新型冠状病毒感染的潜在治疗机制作一介绍。

In response to the sweep of new coronaviruses and the absence of special drug treatments, many places have seen clinical research on mesenchymal stem cells (MSCs) in the treatment of severe infections of new coronaviruses. Based on standardized procedures and rigidclinical examinations, severe cases of the new coronavirus disease were treated with certain effects. MSCs could suppress the excessive activation of the immune system, and relieve respiratory distress by promoting endogenous repair and inhibiting pulmonary inflammation based on microenvironment improvement. This article introduces the pathogenetic mechanism and present status of treatment of new coronavirus-related immune injury, as well as the potential therapeutic mechanism of MSCs for new coronavirus infection.

1
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 Novel Coronavirus-infected pneumonia in Wuhan, China[J]. JAMA, 2020, 323(11):1061-1069.
2
Zhang H, KangZJ, GongHY, et al. The digestive sys tem is a potential route of 2019 nCovinfection:a bioinformatics analysis based on single cell transcriptomes[J]. bioRxiv, 2020, doi:https://doi.org/10.1101/2020.01.30.927806.
3
巨春蓉,李宁,邱涛, 等. 器官移植受者新型冠状病毒肺炎的临床特点和疫情期间的管理策略(第1版)[J]. 器官移植, 2020, 11(2):185-193.
4
Lu RJ, ZhaoX, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding[J]. Lancet, 2020, 395(10224):565-574.
5
Hosseinikia R, Nikbakht MR, Moghaddam AA, et al. Molecular and cellular interactions of allogenic and autologus mesenchymal stem cells with innate and acquired immunity and their role in regenerative medicine[J]. Int J Hematol Oncol Stem Cell Res, 2017, 11(1):63-77.
6
Liu J, Zheng X, Tong QX, et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV[J]. J Med Virol, 2020, 92(5):491-494.
7
Channappanavar R, Zhao J, Perlman S. T cell-mediated immune response to respiratory coronaviruses[J]. Immunol Res, 2014, 59(1-3):118-128.
8
Alosaimi B, Hamed ME, NaeemA, et al. MERS-CoV infection is associated with downregulation of genes encoding Th1 and Th2 cytokines/chemokines and elevated inflammatory innate immune response in the lower respiratory tract[J]. Cytokine, 2020, 126:154895.
9
Qin C, Zhou LQ, Hu ZW, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China[J]. Clin Infect Dis, 2020, ciaa248.
10
Leng ZK, Zhu RJ, Hou W, et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia[J]. Aging Dis, 2020, 11(2):216-228.
11
Ge XY, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor[J]. Nature, 2013, 503(7477):535-538.
12
Wang DW, HuB, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 Novel Coronavirus-infected pneumonia in Wuhan, China[J]. JAMA, 2020, 323(11):1061-1069.
13
Huang CL, Wang YM, Li XW, et al. Clinical features of patients infected with 2019 Novel Coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223):497-506.
14
Chen Y, Liu Q, Guo D. Emerging coronaviruses:Genome structure, replication, and pathogenesis[J]. J Med Virol, 2020, 92(4):418-423.
15
国家卫生健康委员会, 国家中医药管理局.新型冠状病毒感染的肺炎诊疗方案(试行第七版).[EB/OL].

URL    
16
Wang ML, Cao RY, Zhang LK, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro[J] .Cell Res, 2020, 30(3):269-271.
17
Lu HZ. Drug treatment options for the 2019-new coronavirus (2019-nCoV)[J]. Biosci Trends, 2020, 14(1): 69-71.
18
Xiang B, Chen L, Wang X, et al. Transplantation of menstrual blood-derived mesenchymal stem cells promotes the repair of LPS-induced acute lung injury[J]. Int J MolSci, 2017, 18(4):689.
19
Masterson C, Devaney J, Horie S, et al. Syndecan-2-positive, bone marrow-derived human mesenchymal stromal cells attenuate bacterial-induced acute lung injury and enhance resolution of ventilator-induced lung injury in rats[J]. Anesthesiology, 2018, 129(3): 502-516.
20
Liu XX, Ren SD, Ge CZ, et al. Sca-1+Lin-CD117- mesenchymal stem/stromal cells induce the generation of novel IRF8-controlled regulatory dendritic cells through Notch-RBP-J signaling[J]. J Immunol, 2015, 194(9): 4298-4308.
21
Gazdic M, Volarevic V, Arsenijevic N, et al. Mesenchymal stem cells: a friend or foe in immune-mediated diseases[J]. Stem Cell Rev Rep, 2015, 11(2):280-287.
22
Iwata-Yoshikawa N, Okamura T, Shimizu Y, et al. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection[J]. J virol, 2019, 93(6):e01815-e01818.
23
Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection[J]. Front Immunol, 2018, 9:754.
24
VladislavV, Marina G, BojanaSM, et al. Mesenchymal stem cell-derived factors: Immuno-modulatory effects and therapeutic potential: Mesenchymal Stem Cell-Derived Factors[J]. Biofactors, 2017, 43(5):633-644.
25
Pedrazza L, Cubillos-Rojas M, De Mesquita FC, et al. Mesenchymal stem cells decrease lung inflammation during sepsis, acting through inhibition of the MAPK pathway[J]. Stem Cell Res Ther, 2017, 8(1):289.
26
Davies LC, Heldring N, Kadri N, et al. Mesenchymal stromal cell secretion of programmed death-1 ligands regulates t cell mediated immunosuppression[J]. Stem Cells, 2017, 35(3):766-776.
27
Jiang CM, Liu J, Zhao JY, et al. Effects of hypoxia on the immunomodulatory properties of human gingiva-derived mesenchymal stem cells [J]. J Dent Res, 2015, 94(1):69-77.
28
边培育,雷迎峰. 间充质干细胞免疫调控作用可塑性的研究进展[J].微生物学免疫学进展, 2016, 44(6):89-92.
29
Fan XL, Zhang Z, Ma CY, et al. Mesenchymal stem cells for inflammatory airway disorders: promises and challenges[J]. Biosci Rep, 2019, 39(1):BSR20182160.
30
Sutton MT, Fletcher D, Ghosh SK, et al. Antimicrobial properties of mesenchymal stem cells: Therapeutic potential for cystic fibrosis infection, and treatment[J]. Stem Cells Int, 2016, 2016:5303048.
31
Liu A, Chen S, Cai S, et al. Wnt5a through noncanonicalWnt/JNK or Wnt/PKC signaling contributes to the differentiation of mesenchymal stem cells into type Ⅱ alveolar epithelial cells in vitro[J]. Plos One, 2014, 9(3):e90229.
32
Chimenti L, Luque T, Bonsignore MR, et al. Pre-treatment with mesenchymal stem cells reduces ventilator-induced lung injury[J].EurRespir, 2012, 40(4):939-948.
33
Curley GF, Ansari B, Hayes M, et al.Effects of intratracheal mesenchymal stromal cell therapy during recovery and resolution after ventilator-induced lung injury[J]. Ansethesiology, 2013, 118(4):924-932.
34
Hayes M, Masterson C, Devaney J, et al. Therapeutic efficacy of human mesenchymal stromal cells in the repair of established ventilator-induced lung injury in the rat[J]. Anesthesiology, 2015, 122(2):363-373.
35
McAuley DF, Curley GF, Hamid UI, et al. Clinical grade allogeneic human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 306(9): L809-L815.
36
Raimondo S, Urzì O, Conigliaro A, et al. Extracellular vesicle micrornas contribute to the osteogenic inhibition of mesenchymal stem cells in multiple myeloma[J]. Cancers (Basel), 2020, 12(2):449.
37
Li Bo, Luan Song, Chen Jing, et al. The MSC-derived exosomal lncRNA H19 promotes wound healing in diabetic foot ulcers by upregulating PTEN via MicroRNA-152-3p[J]. Mol Ther Nucleic Acids, 2019, 19:814-826.
38
Zhu B, Gong Y, Yan G, et al. Down-regulation of lncRNA MEG3 promotes hypoxia-induced human pulmonary artery smooth muscle cell proliferation and migration via repressing PTEN by sponging miR-21[J]. Biochem Biophys Res Commun, 2018, 495(3):2125-2132.
39
Li J W, Wei L, Han Z, et al. Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p[J]. Eur J Pharmacol, 2019, 852:68-76.
40
Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy[J]. Stem Cells, 2017, 35(4):851-858.
41
Willis G R, Fernandez-Gonzalez A, Anastas J, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation[J]. Am J Respir Crit Care Med, 2018, 197(1):104-116.
[1] 李振华, 解宝江, 易为, 李丽, 卫雅娴, 周明书, 伊诺. 82例孕产妇对新型冠状病毒肺炎疫情防控认知的心理干预及常态化疫情防控应对要点[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 173-179.
[2] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[3] 李埝, 赵建军, 张建勇, 赵睿桢. hAMSCs调控MAPK信号通路对急性肺损伤AQP1的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 156-163.
[4] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[5] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[6] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[7] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[8] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[9] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[10] 陈玉婷, 周影, 陆雅斐, 江滨. 缺氧预处理间充质干细胞的功能及机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 115-120.
[11] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[12] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[13] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[14] 李雪珠, 谢剑锋, 李晓青, 夏泽燕, 鲁玲, 顾晓霞, 马绍磊, 黄英姿. 循环式筛查与五色区域分类模式在方舱医院管理中的应用[J]. 中华重症医学电子杂志, 2023, 09(03): 316-320.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要