1 |
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 Novel Coronavirus-infected pneumonia in Wuhan, China[J]. JAMA, 2020, 323(11):1061-1069.
|
2 |
Zhang H, KangZJ, GongHY, et al. The digestive sys tem is a potential route of 2019 nCovinfection:a bioinformatics analysis based on single cell transcriptomes[J]. bioRxiv, 2020, doi: https://doi.org/10.1101/2020.01.30.927806.
|
3 |
巨春蓉,李宁,邱涛, 等. 器官移植受者新型冠状病毒肺炎的临床特点和疫情期间的管理策略(第1版)[J]. 器官移植, 2020, 11(2):185-193.
|
4 |
Lu RJ, ZhaoX, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding[J]. Lancet, 2020, 395(10224):565-574.
|
5 |
Hosseinikia R, Nikbakht MR, Moghaddam AA, et al. Molecular and cellular interactions of allogenic and autologus mesenchymal stem cells with innate and acquired immunity and their role in regenerative medicine[J]. Int J Hematol Oncol Stem Cell Res, 2017, 11(1):63-77.
|
6 |
Liu J, Zheng X, Tong QX, et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV[J]. J Med Virol, 2020, 92(5):491-494.
|
7 |
Channappanavar R, Zhao J, Perlman S. T cell-mediated immune response to respiratory coronaviruses[J]. Immunol Res, 2014, 59(1-3):118-128.
|
8 |
Alosaimi B, Hamed ME, NaeemA, et al. MERS-CoV infection is associated with downregulation of genes encoding Th1 and Th2 cytokines/chemokines and elevated inflammatory innate immune response in the lower respiratory tract[J]. Cytokine, 2020, 126:154895.
|
9 |
Qin C, Zhou LQ, Hu ZW, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China[J]. Clin Infect Dis, 2020, ciaa248.
|
10 |
Leng ZK, Zhu RJ, Hou W, et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia[J]. Aging Dis, 2020, 11(2):216-228.
|
11 |
Ge XY, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor[J]. Nature, 2013, 503(7477):535-538.
|
12 |
Wang DW, HuB, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 Novel Coronavirus-infected pneumonia in Wuhan, China[J]. JAMA, 2020, 323(11):1061-1069.
|
13 |
Huang CL, Wang YM, Li XW, et al. Clinical features of patients infected with 2019 Novel Coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223):497-506.
|
14 |
Chen Y, Liu Q, Guo D. Emerging coronaviruses:Genome structure, replication, and pathogenesis[J]. J Med Virol, 2020, 92(4):418-423.
|
15 |
国家卫生健康委员会, 国家中医药管理局.新型冠状病毒感染的肺炎诊疗方案(试行第七版).[EB/OL].
URL
|
16 |
Wang ML, Cao RY, Zhang LK, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro[J] .Cell Res, 2020, 30(3):269-271.
|
17 |
Lu HZ. Drug treatment options for the 2019-new coronavirus (2019-nCoV)[J]. Biosci Trends, 2020, 14(1): 69-71.
|
18 |
Xiang B, Chen L, Wang X, et al. Transplantation of menstrual blood-derived mesenchymal stem cells promotes the repair of LPS-induced acute lung injury[J]. Int J MolSci, 2017, 18(4):689.
|
19 |
Masterson C, Devaney J, Horie S, et al. Syndecan-2-positive, bone marrow-derived human mesenchymal stromal cells attenuate bacterial-induced acute lung injury and enhance resolution of ventilator-induced lung injury in rats[J]. Anesthesiology, 2018, 129(3): 502-516.
|
20 |
Liu XX, Ren SD, Ge CZ, et al. Sca-1+Lin-CD117- mesenchymal stem/stromal cells induce the generation of novel IRF8-controlled regulatory dendritic cells through Notch-RBP-J signaling[J]. J Immunol, 2015, 194(9): 4298-4308.
|
21 |
Gazdic M, Volarevic V, Arsenijevic N, et al. Mesenchymal stem cells: a friend or foe in immune-mediated diseases[J]. Stem Cell Rev Rep, 2015, 11(2):280-287.
|
22 |
Iwata-Yoshikawa N, Okamura T, Shimizu Y, et al. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection[J]. J virol, 2019, 93(6):e01815-e01818.
|
23 |
Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection[J]. Front Immunol, 2018, 9:754.
|
24 |
VladislavV, Marina G, BojanaSM, et al. Mesenchymal stem cell-derived factors: Immuno-modulatory effects and therapeutic potential: Mesenchymal Stem Cell-Derived Factors[J]. Biofactors, 2017, 43(5):633-644.
|
25 |
Pedrazza L, Cubillos-Rojas M, De Mesquita FC, et al. Mesenchymal stem cells decrease lung inflammation during sepsis, acting through inhibition of the MAPK pathway[J]. Stem Cell Res Ther, 2017, 8(1):289.
|
26 |
Davies LC, Heldring N, Kadri N, et al. Mesenchymal stromal cell secretion of programmed death-1 ligands regulates t cell mediated immunosuppression[J]. Stem Cells, 2017, 35(3):766-776.
|
27 |
Jiang CM, Liu J, Zhao JY, et al. Effects of hypoxia on the immunomodulatory properties of human gingiva-derived mesenchymal stem cells [J]. J Dent Res, 2015, 94(1):69-77.
|
28 |
边培育,雷迎峰. 间充质干细胞免疫调控作用可塑性的研究进展[J].微生物学免疫学进展, 2016, 44(6):89-92.
|
29 |
Fan XL, Zhang Z, Ma CY, et al. Mesenchymal stem cells for inflammatory airway disorders: promises and challenges[J]. Biosci Rep, 2019, 39(1):BSR20182160.
|
30 |
Sutton MT, Fletcher D, Ghosh SK, et al. Antimicrobial properties of mesenchymal stem cells: Therapeutic potential for cystic fibrosis infection, and treatment[J]. Stem Cells Int, 2016, 2016:5303048.
|
31 |
Liu A, Chen S, Cai S, et al. Wnt5a through noncanonicalWnt/JNK or Wnt/PKC signaling contributes to the differentiation of mesenchymal stem cells into type Ⅱ alveolar epithelial cells in vitro[J]. Plos One, 2014, 9(3):e90229.
|
32 |
Chimenti L, Luque T, Bonsignore MR, et al. Pre-treatment with mesenchymal stem cells reduces ventilator-induced lung injury[J].EurRespir, 2012, 40(4):939-948.
|
33 |
Curley GF, Ansari B, Hayes M, et al.Effects of intratracheal mesenchymal stromal cell therapy during recovery and resolution after ventilator-induced lung injury[J]. Ansethesiology, 2013, 118(4):924-932.
|
34 |
Hayes M, Masterson C, Devaney J, et al. Therapeutic efficacy of human mesenchymal stromal cells in the repair of established ventilator-induced lung injury in the rat[J]. Anesthesiology, 2015, 122(2):363-373.
|
35 |
McAuley DF, Curley GF, Hamid UI, et al. Clinical grade allogeneic human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 306(9): L809-L815.
|
36 |
Raimondo S, Urzì O, Conigliaro A, et al. Extracellular vesicle micrornas contribute to the osteogenic inhibition of mesenchymal stem cells in multiple myeloma[J]. Cancers (Basel), 2020, 12(2):449.
|
37 |
Li Bo, Luan Song, Chen Jing, et al. The MSC-derived exosomal lncRNA H19 promotes wound healing in diabetic foot ulcers by upregulating PTEN via MicroRNA-152-3p[J]. Mol Ther Nucleic Acids, 2019, 19:814-826.
|
38 |
Zhu B, Gong Y, Yan G, et al. Down-regulation of lncRNA MEG3 promotes hypoxia-induced human pulmonary artery smooth muscle cell proliferation and migration via repressing PTEN by sponging miR-21[J]. Biochem Biophys Res Commun, 2018, 495(3):2125-2132.
|
39 |
Li J W, Wei L, Han Z, et al. Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p[J]. Eur J Pharmacol, 2019, 852:68-76.
|
40 |
Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy[J]. Stem Cells, 2017, 35(4):851-858.
|
41 |
Willis G R, Fernandez-Gonzalez A, Anastas J, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation[J]. Am J Respir Crit Care Med, 2018, 197(1):104-116.
|