切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (04) : 213 -218. doi: 10.3877/cma.j.issn.2095-1221.2020.04.003

所属专题: 文献

论著

人脐带间充质干细胞对脂多糖活化的小胶质细胞BV-2表型的影响
梅亚波1, 张万巧1, 陈冲1, 韩涛1, 封志纯1,()   
  1. 1. 100700 北京,中国人民解放军总医院儿科医学部 中国人民解放军总医院第七医学中心八一儿童医院 出生缺陷防控关键技术国家工程实验室 儿童器官功能衰竭北京市重点实验室
  • 收稿日期:2020-03-23 出版日期:2020-08-01
  • 通信作者: 封志纯

Effects of human umbilical cord tissue-derived mesenchymal stem cell on the phenotype of BV-2 cells activated by lipopolysaccharide in vitro

Yabo Mei1, Wanqiao Zhang1, Chong Chen1, Tao Han1, Zhichun Feng1,()   

  1. 1. Faulty of Pediatrics, Chinese PLA General Hospital, BaYi Children's Hospital, the Seventh Medical Center of Chinese PLA General Hospital, National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, China
  • Received:2020-03-23 Published:2020-08-01
  • Corresponding author: Zhichun Feng
  • About author:
    Corresponding author:Feng Zhichun, Email:
引用本文:

梅亚波, 张万巧, 陈冲, 韩涛, 封志纯. 人脐带间充质干细胞对脂多糖活化的小胶质细胞BV-2表型的影响[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(04): 213-218.

Yabo Mei, Wanqiao Zhang, Chong Chen, Tao Han, Zhichun Feng. Effects of human umbilical cord tissue-derived mesenchymal stem cell on the phenotype of BV-2 cells activated by lipopolysaccharide in vitro[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(04): 213-218.

目的

探讨人脐带间充质干细胞(hUCMSCs)对脂多糖(LPS)活化的小胶质细胞功能表型的影响。

方法

实验设未诱导对照组(加入PBS无LPS诱导的BV-2细胞),LPS诱导组(加入1.0 μg/mL的LPS诱导BV-2细胞向M1型分化),按比例加入不同浓度hUCMSCs进行干预(LPS+低、中、高浓度hUCMSCs干预组hUCMSCs与BV-2细胞比例分别为:1:100、1:10、1:1),分别于24、48、72 h观察BV-2形态变化,Griess法检测细胞培养上清中M1表型产物一氧化氮(NO)的浓度;将hUCMSCs与BV-2细胞在不同条件下(LPS+/LPS-)共培养,qRT-PCR检测BV-2细胞M2表型标记物精氨酸酶1表达变化。数据分析采用重复测量资料的方差分析,组间比较采用Tukey分析。

结果

BV-2细胞经LPS诱导后活化,细胞变大,呈"煎饼状"、"阿米巴状"变化,呈经典的M1表型分化;与未诱导对照组相比,LPS诱导组48、72 h BV-2细胞NO含量升高[48 h:(0.507±0.012)μg/mL比(5.183±0.171)μg/ mL;72 h:(0.934±0.024)μg/ mL比(12.498±0.168) μg/mL,P均< 0.01],与LPS诱导组比较,LPS+低、中、高浓度hUCMSCs干预组72 h [(12.498±0.168)μg/mL比(11.852±0.149)μg/ mL、(9.796±0.048)μg/mL、(1.876±0.063) μg/mL]及LPS+中、高浓度hUCMSCs干预组48 h NO含量[(5.183±0.171) μg/ mL比(3.921±0.066)μg/mL、(1.202±0.012)μg/ mL]降低,且呈干预浓度依赖性NO含量下降,差异均有统计学意义(P均< 0.01)。精氨酸酶1 qRT-PCR结果显示:与未诱导组比较,单纯高浓度hUCMSCs干预组3个时间点精氨酸酶1的相对表达量均升高(1.046±0.057比19.266±0.641,1.114±0.093比16.977±0.749,1.139±0.118比16.959±0.625),与LPS诱导对照组(0.000)比较,未诱导对照组(1.046±0.057,1.114±0.093,1.139±0.118)及LPS+高浓度hUCMSCs干预组精氨酸酶1表达(0.879±0.077,1.023±0.081,1.121±0.078)升高,差异具有统计学意义(P均< 0.01)。

结论

LPS可诱导小胶质细胞BV-2炎症反应,而hUCMSCs可抑制活化小胶质细胞的炎症反应,抵消LPS对BV-2的诱导效应,促进小胶质细胞由促炎的M1型向抗炎的M2型转变。

Objective

To explore the effects of human umbilical cord tissue-derived mesenchymal stem cells (hUCMSCs) on the phenotype shift of microglia induced by lipopolyccharide (LPS) .

Method

Lipopolysaccharide (LPS) was used to stimulate BV-2 microglial cell line to establish microglial M1 phenotypic differentiation model in vitro, while the BV-2 microglial cell was treated by PBS without LPS as control group. Then hUCMSCs were co-cultured with BV-2 at different ratios (hUCMSCs to BV-2 cell ratio at 1:100, 1:10, 1:1). After 24, 48 and 72 h, the morphology of BV-2 were observed, and the M1 phenotype product NO in the cell culture supernatants was detected by Griess reagent. The expression of arginase1, a M2 phenotype marker in BV-2 cells under different conditions (LPS+/LPS-) was determined by qRT-PCR analysis. The data was analyzed by variance of repeated measurement data, and Tukey analysis was used for comparison.

Result

The cells became larger and "pancake-like" and "amemeba-like" cells were observed after treated by LPS, showing classical M1 phenotype differentiation. Compared with control group, the NO concentration of cell culture supernatants was increased significantly after LPS stimulation for more than 48 hours [48 h: (0.507±0.012) μg/mL vs (5.183±0.171) μg/mL, 72 h: (0.934±0.024) μg/mL vs (12.498±0.168) μg/mL] (P < 0.01). In addition, the NO content in cells treated by LPS+hUCMSCs was significantly lower than that in cells treated by LPS alone [48 h: (5.183±0.171) μg/ mL vs (3.921±0.066) μg/mL and (1.202±0.012) μg/mL, 72h: (12.498 ± 0.168) μg/mL vs (11.852±0.149) μg/mL, (9.796±0.048) μg/mL and (1.876±0.063) μg/mL], which presented in concentration-dependent manner (P < 0.01). The expression of arginase1 was increased significantly in the cells treated by hUCMSCs in a concentration-dependent manner under no LPS induction. When the ratio of hUCMSCs to BV-2 was 1:1, a statistical difference in the expression of arginase 1 was found between cells treated by LPS+hUCMSCs and untreated cells (24 h: 1.046±0.057 vs 19.266±0.641, 48 h: 1.114±0.093 vs 16.77±0.749 and 72 h: 1.139±0.118 vs 16.959±0.625, P < 0.01). The expression of arginase1 was not detected in the BV-2 cells under LPS induction (0.000), while the expression of arginase 1 could be detected at three time points both in BV-2 treated with LPS alone or LPS+hUCMSCs (LPS: 1.046±0.057, 1.114±0.093, 1.139±0.118, LPS+hUCMSCs: 0.879±0.077, 1.023±0.081, 1.121±0.078) (P < 0.01) .

Conclusions

hUCMSCs could inhibition the inflammatory response of BV-2 induced by LPS and the transformation of microglia from proinflammatory M1 to anti-inflammatory M2.

表1 小鼠小胶质细胞精氨酸酶1和GAPDH的引物序列
图1 光镜下观察静息状态下BV-2细胞形态(×100)
图2 CD11b流式细胞学鉴定
图3 倒置显微镜下观察不同培养条件下的BV-2细胞形态
表2 hUCMSCs与BV-2直接共培养上清液NO含量(±sn = 3)
表3 hUCMSCs与BV-2直接共培养细胞的精氨酸酶1相对表达量(±sn = 3)
表4 LPS刺激条件下hUCMSCs与BV-2直接共培养细胞的精氨酸酶1相对表达量(±sn = 3)
1
Das M, Mayilsamy K, Mohapatra SS, et al. Mesenchymal stem cell therapy for the treatment of traumatic brain injury: progress and prospects[J]. Rev Neurosci, 2019, 30(8):839-855.
2
Carbonara M, Fossi F, Zoerle T, et al. Neuroprotection in traumatic brain injury: mesenchymal stromal cells can potentially overcome some limitations of previous clinical trials[J]. Front Neurol, 2018, 9:885.
3
Hsu PJ, Liu KJ, Chao YY, et al. Assessment of the immunomodulatory properties of human mesenchymal stem cells (MSCs)[J]. J Vis Exp, 2015, (106):e53265.
4
Abdelrahman SA, Samak MA, Shalaby SM. Fluoxetine pretreatment enhances neurogenic, angiogenic and immunomodulatory effects of MSCs on experimentally induced diabetic neuropathy[J]. CellTissue Res, 2018, 74(1):83-97.
5
Horvath RJ, Nutile-Mcmenemy N, Alkaitis MS, et al. Differential migration, LPS-induced cytokine, chemokine, and NO expression in immortalized BV-2 and HAPI cell lines and primary microglial cultures[J]. JNeurochem, 2008, 107(2):557-569.
6
Mei YB, Zhou WQ, Zhang XY, et al. Lipopolysaccharides shapes the human Wharton's jelly-derived mesenchymal stem cells in vitro[J]. Cell Physiol Biochem, 2013, 32(2):390-401.
7
Masuda T, Sankowski R, Staszewski O, et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution[J]. Nature, 2019, 566(7744):388-392.
8
Matcovitch-Natan O, Winter DR, Giladi A, et al. Microglia development follows a stepwise program to regulate brain homeostasis[J]. Science, 2016, 353(6301):aad8670.
9
Böttcher C, Schlickeiser S, Sneeboer MAM, et al. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry.[J]. Nature Neurosci, 2019, 22(1):78-90.
10
Tang Y, Le W. Differential Roles of M1 and M2 microglia in neurodegenerative diseases[J]. Mol Neurobiol, 2016, 53(2):1181-1194.
11
SatohJ. Gene expression profiles of M1 and M2 microglia characterized by comparative analysis of public datasets[J]. Clin Exp Neuroimmunol, 2018, 9(2):124-138.
12
Blasi E, Barluzzi R, Bocchini V, et al. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus[J]. J Neuroimmunol, 1990, 27(2-3):229-237.
13
Kloss CU, Bohatschek M, Kreutzberg GW, et al. Effect of lipopolysaccharide on the morphology and integrin immunoreactivity of ramified microglia in the mouse brain and in cell culture[J].Exp Neurol, 2001, 168(1):32-46.
14
Li L, Wu Y, Wang Y, et al. Resolvin D1 promotes the interleukin-4-induced alternative activation in BV-2 microglial cells[J]. J Neuroinflammation, 2014,11(1):72.
15
Zhao W, Xie W, Le W, et al. Activated microglia initiate motor neuron injury by a nitric oxide and glutamate-mediated mechanism[J]. J Neuropathol Exp Neurol, 2004, 63(9):964-977.
16
Blasioli S, Biondi E, Samudrala D, et al. Identification of volatile markers in potato brown rot and ring rot by combined GC-MS and PTR-MS techniques: study on in vitro and in vivo samples[J].J Agric Food Chem, 2014, 62(2):337-347.
17
Orihuela R, Mcpherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states[J]. Br J Pharmacol, 2016, 173(4):649-665.
18
Aguzzi A, Barres BA, Bennett ML. Microglia: scapegoat saboteur, or something else?[J]. Science, 2013, 339(6116):156-161.
[1] 徐燕群, 李平, 杨兴, 薛慧. 脂多糖通过促进透明质酸受体CD44向核转移介导牙周膜细胞白细胞介素6释放[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 335-344.
[2] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[3] 李埝, 赵建军, 张建勇, 赵睿桢. hAMSCs调控MAPK信号通路对急性肺损伤AQP1的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 156-163.
[4] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[5] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[6] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[7] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[8] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[9] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[10] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[11] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[12] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[13] 张紫薇, 卢弘. 脂多糖受体复合体在急性前葡萄膜炎虹膜色素上皮细胞中作用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 167-171.
[14] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要