切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (04) : 219 -225. doi: 10.3877/cma.j.issn.2095-1221.2020.04.004

所属专题: 文献

论著

miR-106a-5p调控PTEN对鼻咽癌细胞SUNE2增殖和迁移的抑制作用研究
李专1, 饶丽华1,(), 高红1, 王奎荣1   
  1. 1. 443000 宜昌,湖北省宜昌市第二人民医院耳鼻咽喉科
  • 收稿日期:2020-01-13 出版日期:2020-08-01
  • 通信作者: 饶丽华

Inhibitory of miR-106a-5p regulating PTEN on the proliferation and migration of nasopharyngeal carcinoma cells SUNE2

Zhuan Li1, Lihua Rao1,(), Hong Gao1, Kuirong Wang1   

  1. 1. Department of Otolaryngology, the Second People's Hospital of Yichang City, Yichang 443000, China
  • Received:2020-01-13 Published:2020-08-01
  • Corresponding author: Lihua Rao
  • About author:
    Corresponding author: Rao Lihua, Email:
引用本文:

李专, 饶丽华, 高红, 王奎荣. miR-106a-5p调控PTEN对鼻咽癌细胞SUNE2增殖和迁移的抑制作用研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2020, 10(04): 219-225.

Zhuan Li, Lihua Rao, Hong Gao, Kuirong Wang. Inhibitory of miR-106a-5p regulating PTEN on the proliferation and migration of nasopharyngeal carcinoma cells SUNE2[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(04): 219-225.

目的

研究miR-106a-5p对鼻咽癌细胞SUNE2增殖和迁移的影响。

方法

将体外培养的鼻咽癌细胞SUNE2分成对照组(细胞未做任何处理)、Anti-NC组(转染阴性对照抑制剂)、Anti-miR-106a-5p组(转染miR-106a-5p抑制剂)、后期实验另设Anti-miR-106a-5p-inhibitor+si-NC组(转染miR-106a-5p抑制剂、siRNA阴性对照)、Anti-miR-106a-5p-inhibitor+si-PTEN组(转染miR-106a-5p抑制剂、PTEN siRNA),采用Realtime PCR测定miR-106a-5p表达,MTT法检测增殖,Transwell小室检测细胞侵袭和迁移能力变化,用Western blot方法测定vimentin、E-cadherin蛋白表达。在线靶基因预测软件预测miR-106a-5p的靶基因可能为PTEN,双荧光素酶报告系统鉴定miR-106a-5p和PTEN的靶向关系。两组间比较用独立样本t检验,多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验。

结果

与正常鼻咽上皮细胞NP69比较,鼻咽癌细胞CNE-2、HK1、SUNE2中miR-106a-5p水平(1.00±0.11比1.84±0.13、2.19±0.14、2.87±0.25)升高,差异具有统计学意义(P < 0.05)。与对照组、Anti-NC组比较,Anti-miR-106a-5p组鼻咽癌细胞miR-106a-5p水平(1.00±0.10、0.99±0.12比0.76±0.08)降低,OD值(0.56±0.05、0.57±0.04比0.32±0.02),细胞侵袭数[(128.47±11.65)个、(129.84±10.93)个比(85.12±6.75)个],迁移数[(182.51±14.81)个、(180.68±17.64)个比(122.01±11.62)个],vimentin蛋白表达水平(0.84±0.09、0.82±0.07比0.30±0.05)降低,E-cadherin蛋白表达水平(0.29±0.04、0.28±0.05比0.76±0.08)升高,差异具有统计学意义(P均< 0.05)。与Anti-miR-106a-inhibitor+si-NC组比较,Anti-miR-106a-inhibitor+si-PTEN组细胞OD值(0.33±0.03比0.52±0.05)、侵袭数[(84.16±5.91)个比(105.79±8.63)个]、迁移数[(118.42±10.25)个比(164.28±12.05)个]、vimentin蛋白表达水平(0.34±0.06比0.68±0.05)均升高,E-cadherin蛋白表达水平(0.72±0.06比0.29±0.05)降低,差异具有统计学意义(P均< 0.05)。

结论

miR-106a-5p可通过靶向调控PTEN抑制鼻咽癌细胞SUNE2增殖和迁移潜能。

Objective

To investigate the effect of miR-106a-5p on the proliferation and migration of nasopharyngeal carcinoma cells SUNE2.

Methods

The nasopharyngeal carcinoma cells SUNE2 cultured in vitro were divided into Control group (without treatment), Anti-NC group (transfected with inhibitor control) and Anti-miR-106a-5p group (transfected with miR-106a-5p inhibitor), as well as Anti-miR-106a-5p+si-NC group (transfected with miR-106a-5p inhibitor and siRNA control) and Anti-miR-106a-5p+si-PTEN group (transfected with miR-106a-5p inhibitor and PTEN siRNA). Realtime PCR was used to determine the expression of miR-106a-5p, MTT and Transwell were used to detect proliferation rate, invasion and migration ability of cells, respectively. The expression levels of vimentin and E-cadherin protein were detected by Western blot. The online target gene prediction software suggests that the target gene of miR-106a-5p may be PTEN, and the dual luciferase reporter system examines the targeting relationship between miR-106a-5p and PTEN. The independent sample t-test was used for the comparison between two groups, the ANOVA analysis was used for the multiple group comparison, and the LSD-t test was used for the pairwise comparison of the components.

Results

Compared with NP69 in normal nasopharyngeal epithelial cells, the expression level of miR-106a-5p in nasopharyngeal carcinoma cells CNE-2, HK1, and SUNE2 were increased (1.00±0.11 vs 1.84±0.13, 2.19±0.14, 2.87±0.25), the difference was statistically significant (P < 0.05) .Compared with the Control and Anti-NC group, the expression level of miR-106a-5p (1.00±0.10, 0.99±0.12 vs 0.76±0.08), the OD values (0.56±0.05, 0.57±0.04 vs 0.32±0.02), cell invasion (128.47±11.65, 129.84±10.93 vs 85.12±6.75), the number of migrations (182.51±14.81, 180.68±17.64 vs 122.01±11.62) as well as the expression level of vimentin protein (0.84±0.09, 0.82±0.07 vs 0.30±0.05) of nasopharyngeal cancer cells in the Anti-miR-106a-5p group were significantly reduced. While the expression level of E-cadherin protein was increased (0.29±0.04, 0.28±0.05 vs 0.76±0.08) (P < 0.05). Compared with the Anti-miR-106a-inhibitor+si-NC group, in the Anti-miR-106a-inhibitor+si-PTEN group, the OD value (0.33±0.03 vs 0.52±0.05), the number of invasions (84.16±5.91 vs 105.79±8.63) and migrations (118.42±10.25 vs 164.28±12.05) as well as the expression of vimentin protein (0.34±0.06 vs 0.68±0.05) were all significantly increased. While the expression of E-cadherin protein was decreased (0.72±0.06 vs 0.29±0.05) (P < 0.05) .

Conclusion

miR-106a-5p could inhibit the proliferation and migration of nasopharyngeal carcinoma cells SUNE2 by targeted regulation of PTEN.

表1 引物序列信息
表2 鼻咽癌细胞和正常鼻咽上皮细胞中miR-106a-5p表达水平(±sn = 3)
表3 miR-106a-5p抑制剂转染后鼻咽癌细胞中miR-106a-5p水平(±sn = 3)
图1 倒置显微镜下观察Transwell小室检测miR-106a抑制剂转染后鼻咽癌细胞侵袭和迁移结果(结晶紫染色,×200)
图2 Western blot检测miR-106a抑制剂转染后鼻咽癌细胞中vimentin、E-cadherin蛋白水平
表4 miR-106a抑制剂转染后鼻咽癌细胞OD值、侵袭数目、迁移数目和vimentin、E-cadherin蛋白水平(±sn = 3)
图3 miR-106a与PTEN的3'UTR端结合位点
图4 Western blot检测miR-106a抑制剂转染后鼻咽癌细胞中PTEN蛋白水平
表5 荧光素酶活性(±sn = 3)
表6 miR-106a抑制剂转染后鼻咽癌细胞中PTEN蛋白水平(±sn = 3)
图5 Western blot检测miR-106a-5p抑制剂和PTEN siRNA转染后鼻咽癌细胞中vimentin、E-cadherin、PTEN蛋白水平
表7 miR-106a-5p抑制剂和PTEN siRNA转染后鼻咽癌细胞OD值、侵袭数目、迁移数目和vimentin、E-cadherin、PTEN蛋白水平(±sn = 3)
1
Lu S, Wei J, Sun F, et al. Late sequelae of childhood and adolescent nasopharyngeal carcinoma survivors after radiation therapy[J]. Int J Radia Oncol Biol Phys, 2019, 103(1):45-51.
2
Tu C, Zeng Z, Qi P, et al. Identification of genomic alterations in nasopharyngeal carcinoma and nasopharyngeal carcinoma-derived Epstein-Barr virus by whole-genome sequencing[J]. Carcinogenesis, 2018, 39(12): 1517-1528.
3
Müller S, Bley N, Glaß M, et al. IGF2BP1 enhances an aggressive tumor cell phenotype by impairing miRNA-directed downregulation of oncogenic factors[J]. Nucleic Acids Res, 2018, 46(12):6285-6303.
4
Guo S, Lin WN, Hu Y, et al. Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification[J]. Lab Chip, 2018, 18(13):1914-1920.
5
Adams BD, Arem H, Hubal MJ, et al. Exercise and weight loss interventions and miRNA expression in women with breast cancer[J]. Breast Cancer Research Treat, 2018, 170(1):55-67.
6
Luo B, Kang N, Chen Y, et al. Oncogene miR-106a promotes proliferation and metastasis of prostate cancer cells by directly targeting PTEN in vivo and in vitro[J]. Minerva Med, 2018, 109(1):24-30.
7
Hu B, Cai H, Zheng R, et al. Long non-coding RNA 657 suppresses hepatocellular carcinoma cell growth by acting as a molecular sponge of miR-106a-5p to regulate PTEN expression[J]. Int J Biochem Cell Biol, 2017, 92(11):34-42.
8
Bian X, Gao J, Luo F, et al. PTEN deficiency sensitizes endometrioid endometrial cancer to compound PARP-PI3K inhibition but not PARP inhibition as monotherapy[J]. Oncogene, 2018, 37(3):341-351.
9
Lu J, Mu X, Yin Q, et al. miR-106a contributes to prostate carcinoma progression through PTEN[J]. Oncol Lett, 2019, 17(1): 1327-1332.
10
Liu J, Huang Y, Wang H, et al. MiR-106a-5p promotes 5-FU resistance and the metastasis of colorectal cancer by targeting TGFβR2[J]. Int J Clin Exp Pathol, 2018, 11(12):5622-5634.
11
丁莎莎,陈晓丽,陈子兴, 等. MicroRNA-106a在非小细胞肺癌中的表达及意义[J]. 现代肿瘤医学, 2015, 23(16):2289-2291.
12
Shi B, Ma C, Liu G, et al. MiR-106a directly targets LIMK1 to inhibit proliferation and EMT of oral carcinoma cells[J]. Cell Mol Biol Lett, 2019, 24(1):1-13.
13
Zare M, Bastami M, Solali S, et al. Aberrant miRNA promoter methylation and EMT-involving miRNAs in breast cancer metastasis: diagnosis and therapeutic implications[J]. J Cell Physiol, 2018, 233(5):3729-3744.
14
Lamprecht S, Kaller M, Schmidt EM, et al. PBX3 is part of an EMT regulatory network and indicates poor outcome in colorectal cancer[J]. Clin Cancer Res, 2018, 24(8):1974-1986.
15
Zhang Q, Li X, Li X, et al. LncRNA H19 promotes epithelial-mesenchymal transition (EMT) by targeting miR-484 in human lung cancer cells[J]. J Cell Biochem, 2018, 119(6):4447-4457.
16
Zhou Z, Zhang HS, Liu Y, et al. Loss of TET1 facilitates DLD1 colon cancer cell migration via H3K27me3-mediated down-regulation of E-cadherin[J]. J Cell Physiol, 2018, 233(2):1359-1369.
17
Dufresne S, Rébillard A, Muti P, et al. A review of physical activity and circulating miRNA expression: implications in cancer risk and progression[J]. Cancer Epidemiol Biomarkers Prev, 2018, 27(1):11-24.
18
Lo UG, Pong RC, Yang D, et al. IFNγ-induced IFIT5 promotes epithelial-to-mesenchymal transition in prostate cancer via miRNA processing[J]. Cancer Res, 2019, 79(6):1098-1112.
19
Ding M, Van der Kwast TH, Vellanki RN, et al. The mTOR Targets 4E-BP1/2 restrain tumor growth and promote hypoxia tolerance in PTEN-driven prostate cancer[J]. Mol Cancer Res, 2018, 16(4):682-695.
20
Kim SM, Nguyen TT, Ravi A, et al. PTEN deficiency and AMPK activation promote nutrient scavenging and anabolism in prostate cancer cells[J]. Cancer Discov, 2018, 8(7):866-883.
21
He F, Ma N, Midorikawa K, et al. Taurine exhibits an apoptosis-inducing effect on human nasopharyngeal carcinoma cells through PTEN/Akt pathways in vitro[J]. Amino Acids, 2018, 50(12):1749-1758.
22
Hsu YL, Hung JY, Chang WA, et al. Hypoxic lung-Cancer-derived extracellular vesicle MicroRNA-103a increases the oncogenic effects of macrophages by targeting PTEN[J]. Mol Ther, 2018, 26(2):568-581.
23
Lopez C, Abuel-Haija M, Pena L, et al. Novel germline PTEN mutation associated with cowden syndrome and osteosarcoma[J]. Cancer Genomics Proteomics, 2018, 15(2):115-120.
24
Yang Y, Guo JX, Shao ZQ. miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: An experimental study[J]. Asian Pac J Trop Med, 2017, 10(1):87-91.
[1] 陈金业, 凌潜龙, 朱冰, 骆杰. 补体B因子在结直肠癌中的表达及临床意义[J/OL]. 中华普通外科学文献(电子版), 2024, 18(03): 192-198.
[2] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[3] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[4] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[5] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[6] 赵旭鹏, 王集琛, 田硕, 李宏召, 李修彬, 张旭. EP300 通过上调FKBP10 促进膀胱肿瘤细胞迁移和侵袭[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 264-274.
[7] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[8] 曾聿理, 雷发容, 肖慧, 邱德亮, 谢静, 吴寻. 氯普鲁卡因通过调控circRNA-ZKSCAN1表达抑制肝癌Huh-7细胞体外生长和转移的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 220-228.
[9] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[10] 崔精, 鲍一帆, 沈晓明, 杨增辉, 高森, 鲍传庆. 结直肠癌中circMFSD12对肿瘤细胞功能及5-FU敏感性的调控[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 294-302.
[11] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[12] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
[13] 朱洪申, 王思权, 彭靓, 张晓斌, 郑美云, 陈锦华. Glubran-2栓塞治疗鼻咽癌相关难治性鼻出血的临床疗效[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 333-337.
[14] 朱镭, 朱庆义. 金氏菌属:引起婴幼儿侵袭性传染病的新发病原体[J/OL]. 中华临床实验室管理电子杂志, 2024, 12(04): 229-237.
[15] 张芳芳, 李军, 赵玉洁, 于彤, 宁春平. 侵袭性血管黏液瘤的影像学特征并文献复习[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 254-259.
阅读次数
全文


摘要