切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (04) : 219 -225. doi: 10.3877/cma.j.issn.2095-1221.2020.04.004

所属专题: 文献

论著

miR-106a-5p调控PTEN对鼻咽癌细胞SUNE2增殖和迁移的抑制作用研究
李专1, 饶丽华1,(), 高红1, 王奎荣1   
  1. 1. 443000 宜昌,湖北省宜昌市第二人民医院耳鼻咽喉科
  • 收稿日期:2020-01-13 出版日期:2020-08-01
  • 通信作者: 饶丽华

Inhibitory of miR-106a-5p regulating PTEN on the proliferation and migration of nasopharyngeal carcinoma cells SUNE2

Zhuan Li1, Lihua Rao1,(), Hong Gao1, Kuirong Wang1   

  1. 1. Department of Otolaryngology, the Second People's Hospital of Yichang City, Yichang 443000, China
  • Received:2020-01-13 Published:2020-08-01
  • Corresponding author: Lihua Rao
  • About author:
    Corresponding author: Rao Lihua, Email:
引用本文:

李专, 饶丽华, 高红, 王奎荣. miR-106a-5p调控PTEN对鼻咽癌细胞SUNE2增殖和迁移的抑制作用研究[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(04): 219-225.

Zhuan Li, Lihua Rao, Hong Gao, Kuirong Wang. Inhibitory of miR-106a-5p regulating PTEN on the proliferation and migration of nasopharyngeal carcinoma cells SUNE2[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(04): 219-225.

目的

研究miR-106a-5p对鼻咽癌细胞SUNE2增殖和迁移的影响。

方法

将体外培养的鼻咽癌细胞SUNE2分成对照组(细胞未做任何处理)、Anti-NC组(转染阴性对照抑制剂)、Anti-miR-106a-5p组(转染miR-106a-5p抑制剂)、后期实验另设Anti-miR-106a-5p-inhibitor+si-NC组(转染miR-106a-5p抑制剂、siRNA阴性对照)、Anti-miR-106a-5p-inhibitor+si-PTEN组(转染miR-106a-5p抑制剂、PTEN siRNA),采用Realtime PCR测定miR-106a-5p表达,MTT法检测增殖,Transwell小室检测细胞侵袭和迁移能力变化,用Western blot方法测定vimentin、E-cadherin蛋白表达。在线靶基因预测软件预测miR-106a-5p的靶基因可能为PTEN,双荧光素酶报告系统鉴定miR-106a-5p和PTEN的靶向关系。两组间比较用独立样本t检验,多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验。

结果

与正常鼻咽上皮细胞NP69比较,鼻咽癌细胞CNE-2、HK1、SUNE2中miR-106a-5p水平(1.00±0.11比1.84±0.13、2.19±0.14、2.87±0.25)升高,差异具有统计学意义(P < 0.05)。与对照组、Anti-NC组比较,Anti-miR-106a-5p组鼻咽癌细胞miR-106a-5p水平(1.00±0.10、0.99±0.12比0.76±0.08)降低,OD值(0.56±0.05、0.57±0.04比0.32±0.02),细胞侵袭数[(128.47±11.65)个、(129.84±10.93)个比(85.12±6.75)个],迁移数[(182.51±14.81)个、(180.68±17.64)个比(122.01±11.62)个],vimentin蛋白表达水平(0.84±0.09、0.82±0.07比0.30±0.05)降低,E-cadherin蛋白表达水平(0.29±0.04、0.28±0.05比0.76±0.08)升高,差异具有统计学意义(P均< 0.05)。与Anti-miR-106a-inhibitor+si-NC组比较,Anti-miR-106a-inhibitor+si-PTEN组细胞OD值(0.33±0.03比0.52±0.05)、侵袭数[(84.16±5.91)个比(105.79±8.63)个]、迁移数[(118.42±10.25)个比(164.28±12.05)个]、vimentin蛋白表达水平(0.34±0.06比0.68±0.05)均升高,E-cadherin蛋白表达水平(0.72±0.06比0.29±0.05)降低,差异具有统计学意义(P均< 0.05)。

结论

miR-106a-5p可通过靶向调控PTEN抑制鼻咽癌细胞SUNE2增殖和迁移潜能。

Objective

To investigate the effect of miR-106a-5p on the proliferation and migration of nasopharyngeal carcinoma cells SUNE2.

Methods

The nasopharyngeal carcinoma cells SUNE2 cultured in vitro were divided into Control group (without treatment), Anti-NC group (transfected with inhibitor control) and Anti-miR-106a-5p group (transfected with miR-106a-5p inhibitor), as well as Anti-miR-106a-5p+si-NC group (transfected with miR-106a-5p inhibitor and siRNA control) and Anti-miR-106a-5p+si-PTEN group (transfected with miR-106a-5p inhibitor and PTEN siRNA). Realtime PCR was used to determine the expression of miR-106a-5p, MTT and Transwell were used to detect proliferation rate, invasion and migration ability of cells, respectively. The expression levels of vimentin and E-cadherin protein were detected by Western blot. The online target gene prediction software suggests that the target gene of miR-106a-5p may be PTEN, and the dual luciferase reporter system examines the targeting relationship between miR-106a-5p and PTEN. The independent sample t-test was used for the comparison between two groups, the ANOVA analysis was used for the multiple group comparison, and the LSD-t test was used for the pairwise comparison of the components.

Results

Compared with NP69 in normal nasopharyngeal epithelial cells, the expression level of miR-106a-5p in nasopharyngeal carcinoma cells CNE-2, HK1, and SUNE2 were increased (1.00±0.11 vs 1.84±0.13, 2.19±0.14, 2.87±0.25), the difference was statistically significant (P < 0.05) .Compared with the Control and Anti-NC group, the expression level of miR-106a-5p (1.00±0.10, 0.99±0.12 vs 0.76±0.08), the OD values (0.56±0.05, 0.57±0.04 vs 0.32±0.02), cell invasion (128.47±11.65, 129.84±10.93 vs 85.12±6.75), the number of migrations (182.51±14.81, 180.68±17.64 vs 122.01±11.62) as well as the expression level of vimentin protein (0.84±0.09, 0.82±0.07 vs 0.30±0.05) of nasopharyngeal cancer cells in the Anti-miR-106a-5p group were significantly reduced. While the expression level of E-cadherin protein was increased (0.29±0.04, 0.28±0.05 vs 0.76±0.08) (P < 0.05). Compared with the Anti-miR-106a-inhibitor+si-NC group, in the Anti-miR-106a-inhibitor+si-PTEN group, the OD value (0.33±0.03 vs 0.52±0.05), the number of invasions (84.16±5.91 vs 105.79±8.63) and migrations (118.42±10.25 vs 164.28±12.05) as well as the expression of vimentin protein (0.34±0.06 vs 0.68±0.05) were all significantly increased. While the expression of E-cadherin protein was decreased (0.72±0.06 vs 0.29±0.05) (P < 0.05) .

Conclusion

miR-106a-5p could inhibit the proliferation and migration of nasopharyngeal carcinoma cells SUNE2 by targeted regulation of PTEN.

表1 引物序列信息
表2 鼻咽癌细胞和正常鼻咽上皮细胞中miR-106a-5p表达水平(±sn = 3)
表3 miR-106a-5p抑制剂转染后鼻咽癌细胞中miR-106a-5p水平(±sn = 3)
图1 倒置显微镜下观察Transwell小室检测miR-106a抑制剂转染后鼻咽癌细胞侵袭和迁移结果(结晶紫染色,×200)
图2 Western blot检测miR-106a抑制剂转染后鼻咽癌细胞中vimentin、E-cadherin蛋白水平
表4 miR-106a抑制剂转染后鼻咽癌细胞OD值、侵袭数目、迁移数目和vimentin、E-cadherin蛋白水平(±sn = 3)
图3 miR-106a与PTEN的3'UTR端结合位点
图4 Western blot检测miR-106a抑制剂转染后鼻咽癌细胞中PTEN蛋白水平
表5 荧光素酶活性(±sn = 3)
表6 miR-106a抑制剂转染后鼻咽癌细胞中PTEN蛋白水平(±sn = 3)
图5 Western blot检测miR-106a-5p抑制剂和PTEN siRNA转染后鼻咽癌细胞中vimentin、E-cadherin、PTEN蛋白水平
表7 miR-106a-5p抑制剂和PTEN siRNA转染后鼻咽癌细胞OD值、侵袭数目、迁移数目和vimentin、E-cadherin、PTEN蛋白水平(±sn = 3)
1
Lu S, Wei J, Sun F, et al. Late sequelae of childhood and adolescent nasopharyngeal carcinoma survivors after radiation therapy[J]. Int J Radia Oncol Biol Phys, 2019, 103(1):45-51.
2
Tu C, Zeng Z, Qi P, et al. Identification of genomic alterations in nasopharyngeal carcinoma and nasopharyngeal carcinoma-derived Epstein-Barr virus by whole-genome sequencing[J]. Carcinogenesis, 2018, 39(12): 1517-1528.
3
Müller S, Bley N, Glaß M, et al. IGF2BP1 enhances an aggressive tumor cell phenotype by impairing miRNA-directed downregulation of oncogenic factors[J]. Nucleic Acids Res, 2018, 46(12):6285-6303.
4
Guo S, Lin WN, Hu Y, et al. Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification[J]. Lab Chip, 2018, 18(13):1914-1920.
5
Adams BD, Arem H, Hubal MJ, et al. Exercise and weight loss interventions and miRNA expression in women with breast cancer[J]. Breast Cancer Research Treat, 2018, 170(1):55-67.
6
Luo B, Kang N, Chen Y, et al. Oncogene miR-106a promotes proliferation and metastasis of prostate cancer cells by directly targeting PTEN in vivo and in vitro[J]. Minerva Med, 2018, 109(1):24-30.
7
Hu B, Cai H, Zheng R, et al. Long non-coding RNA 657 suppresses hepatocellular carcinoma cell growth by acting as a molecular sponge of miR-106a-5p to regulate PTEN expression[J]. Int J Biochem Cell Biol, 2017, 92(11):34-42.
8
Bian X, Gao J, Luo F, et al. PTEN deficiency sensitizes endometrioid endometrial cancer to compound PARP-PI3K inhibition but not PARP inhibition as monotherapy[J]. Oncogene, 2018, 37(3):341-351.
9
Lu J, Mu X, Yin Q, et al. miR-106a contributes to prostate carcinoma progression through PTEN[J]. Oncol Lett, 2019, 17(1): 1327-1332.
10
Liu J, Huang Y, Wang H, et al. MiR-106a-5p promotes 5-FU resistance and the metastasis of colorectal cancer by targeting TGFβR2[J]. Int J Clin Exp Pathol, 2018, 11(12):5622-5634.
11
丁莎莎,陈晓丽,陈子兴, 等. MicroRNA-106a在非小细胞肺癌中的表达及意义[J]. 现代肿瘤医学, 2015, 23(16):2289-2291.
12
Shi B, Ma C, Liu G, et al. MiR-106a directly targets LIMK1 to inhibit proliferation and EMT of oral carcinoma cells[J]. Cell Mol Biol Lett, 2019, 24(1):1-13.
13
Zare M, Bastami M, Solali S, et al. Aberrant miRNA promoter methylation and EMT-involving miRNAs in breast cancer metastasis: diagnosis and therapeutic implications[J]. J Cell Physiol, 2018, 233(5):3729-3744.
14
Lamprecht S, Kaller M, Schmidt EM, et al. PBX3 is part of an EMT regulatory network and indicates poor outcome in colorectal cancer[J]. Clin Cancer Res, 2018, 24(8):1974-1986.
15
Zhang Q, Li X, Li X, et al. LncRNA H19 promotes epithelial-mesenchymal transition (EMT) by targeting miR-484 in human lung cancer cells[J]. J Cell Biochem, 2018, 119(6):4447-4457.
16
Zhou Z, Zhang HS, Liu Y, et al. Loss of TET1 facilitates DLD1 colon cancer cell migration via H3K27me3-mediated down-regulation of E-cadherin[J]. J Cell Physiol, 2018, 233(2):1359-1369.
17
Dufresne S, Rébillard A, Muti P, et al. A review of physical activity and circulating miRNA expression: implications in cancer risk and progression[J]. Cancer Epidemiol Biomarkers Prev, 2018, 27(1):11-24.
18
Lo UG, Pong RC, Yang D, et al. IFNγ-induced IFIT5 promotes epithelial-to-mesenchymal transition in prostate cancer via miRNA processing[J]. Cancer Res, 2019, 79(6):1098-1112.
19
Ding M, Van der Kwast TH, Vellanki RN, et al. The mTOR Targets 4E-BP1/2 restrain tumor growth and promote hypoxia tolerance in PTEN-driven prostate cancer[J]. Mol Cancer Res, 2018, 16(4):682-695.
20
Kim SM, Nguyen TT, Ravi A, et al. PTEN deficiency and AMPK activation promote nutrient scavenging and anabolism in prostate cancer cells[J]. Cancer Discov, 2018, 8(7):866-883.
21
He F, Ma N, Midorikawa K, et al. Taurine exhibits an apoptosis-inducing effect on human nasopharyngeal carcinoma cells through PTEN/Akt pathways in vitro[J]. Amino Acids, 2018, 50(12):1749-1758.
22
Hsu YL, Hung JY, Chang WA, et al. Hypoxic lung-Cancer-derived extracellular vesicle MicroRNA-103a increases the oncogenic effects of macrophages by targeting PTEN[J]. Mol Ther, 2018, 26(2):568-581.
23
Lopez C, Abuel-Haija M, Pena L, et al. Novel germline PTEN mutation associated with cowden syndrome and osteosarcoma[J]. Cancer Genomics Proteomics, 2018, 15(2):115-120.
24
Yang Y, Guo JX, Shao ZQ. miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: An experimental study[J]. Asian Pac J Trop Med, 2017, 10(1):87-91.
[1] 傅子财, 戴冠东, 朱伟民, 陆伟, 熊建义, 王大平, 邓桢翰. 过氧化物酶体增殖物激活受体在骨关节炎中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 363-367.
[2] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[3] 郑嘉裕, 吴建杰, 李小娟, 曾恒达, 李国邦, 黄炯煅, 温星桥. hsa_circ_0090923在前列腺癌中的表达及其对前列腺癌细胞增殖和迁移的调控[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 276-283.
[4] 刘雪峰, 韩海峰, 杨硕, 逯景辉. 腹腔镜腹壁侵袭性纤维瘤病切除联合腹壁重建:单中心经验总结[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 374-379.
[5] 孟原竹, 蒋国路, 陈小兵, 蒋莉. 肺结核合并侵袭性肺曲霉感染临床特征及危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 541-543.
[6] 卞天丹, 宋爽, 陶臻. 高毒力肺炎克雷伯菌分子学机制研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 438-441.
[7] 余慧, 王静, 杜丹, 杨帆. 下调miR-301a-3p抑制人卵巢颗粒KGN细胞增殖和诱导凋亡的机制研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 137-143.
[8] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[9] 施我大, 张亚军, 施展, 吴纪祥, 常绘文, 易忠权, 梁晓东, 周晶晶, 宋建祥. Treg细胞通过上调TGF-β1和B7-H3表达促进食管癌细胞增殖、迁移和侵袭[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 65-75.
[10] 莫钊鸿, 翟航, 苏日顺, 孟泓宇, 罗豪, 陈文豪, 许瑞云. U2AF2表达对肝细胞癌增殖和迁移的影响及其与预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 336-341.
[11] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[12] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[13] 方辉, 李菲, 张帆, 魏强, 陈强谱. 外源性瘦素对梗阻性黄疸大鼠肠黏膜增殖的影响[J]. 中华临床医师杂志(电子版), 2023, 17(05): 575-580.
[14] 张懿炜, 胡亚欣, 出良钊, 严昭, 曾茜, 蒲茜. CREB3通过下调FAK磷酸化水平抑制胶质瘤细胞增殖及侵袭转移的体外实验研究[J]. 中华临床医师杂志(电子版), 2023, 17(02): 202-209.
[15] 李世浩, 王玉姣, 李子豪, 吴彬, 盛银良, 齐宇. 单细胞转录组分析巨噬细胞帽状蛋白对食管鳞癌细胞增殖和转移的影响[J]. 中华胸部外科电子杂志, 2023, 10(02): 98-105.
阅读次数
全文


摘要