切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (05) : 272 -277. doi: 10.3877/cma.j.issn.2095-1221.2018.05.003

所属专题: 文献

论著

牵张应力刺激介导间充质干细胞的信使RNA和长链非编码RNA表达谱变化
邹庆宝1,(), 靳松1, 黄爱军1   
  1. 1. 518033 深圳,中山大学附属第八医院骨科
  • 收稿日期:2018-09-03 出版日期:2018-10-01
  • 通信作者: 邹庆宝

Differentially expressed profile of messager RNA and long non-coding RNA in mesenchymal stem cell with strain stimulation

Qingbao Zhou1,(), Song Jin1, Aijun Huang1   

  1. 1. Department of Orthopedic the Eighth Affiliated Hospital of Sun Yat-sen University, 518033 Shenzhen, China
  • Received:2018-09-03 Published:2018-10-01
  • Corresponding author: Qingbao Zhou
  • About author:
    Corresponding author: Zhou Qingbao, Email:
引用本文:

邹庆宝, 靳松, 黄爱军. 牵张应力刺激介导间充质干细胞的信使RNA和长链非编码RNA表达谱变化[J/OL]. 中华细胞与干细胞杂志(电子版), 2018, 08(05): 272-277.

Qingbao Zhou, Song Jin, Aijun Huang. Differentially expressed profile of messager RNA and long non-coding RNA in mesenchymal stem cell with strain stimulation[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(05): 272-277.

目的

探讨信使RNA和长链非编码RNA在牵张应力刺激间充质干细胞(MSC)成骨分化中的作用。

方法

分离培养正常人骨髓MSC,分为应力组与无应力组,应力组通过FlexCell应力系统对其施加外源性应力(5﹪形变、频率0.1 Hz、作用时间4 h/d),无应力组不予以外源性应力刺激,通过茜素红实验和碱性磷酸酶实验检测其成骨分化能力改变。提取应力刺激下第7天RNA,进行全基因组及长链非编码芯片表达谱检测,通过生物信息学方法分析和鉴定关键长链非编码RNA。采用两样本t检验进行统计学分析。

结果

成骨第14天应力组MSC茜素红定量OD值为1.46±0.19,高于无应力组MSC 0.62±0.08,差异具有统计学意义(t?= -1.99,P < 0.05)。此外,成骨第14天应力组MSC碱性磷酸酶结果(265.3±31.2)U/L,较无应力组(121.2±21.2)U/L升高(t = -12.23,P < 0.05)。通过芯片表达谱检测,牵张应力刺激下成骨第7天共有差异表达信使RNA 598个,差异表达长链非编码RNA 329个。通过KEGG分析提示WNT信号通路是差异表达最明显的信号通路,其中WNT5a表达变化最为明显(6.74倍,P?< 0.01)。通过共表达分析提示lnc-RNA-SSR是调控WNT5a表达的主要长链非编码RNA。

结论

牵张应力刺激下MSC的信使RNA和长链非编码RNA表达谱明显改变,其中lnc-RNA-SSR可能通过WNT5a影响MSC成骨分化能力。

Objective

To determine the role of mRNA and lnc-RNA in the osteogenic differentiation of MSC with strain stimulation.

Methods

MSC from healthy donors were isolated, cultured and then divided into the experimental group and the control group. The experimental group was stimulated with strain using FlexCell system (5﹪, 0.1?Hz, 4?h/d), and the control group was cultured without stimulaiton. The osteogenic differentiation ability of MSC was detected by alizarin red and alkaline phosphatase assays. RNA was extracted on day 7 of osteogenic differentiation, which was then detected using the mRNA and lnc-RNA expression microarrays. The key lnc-RNAs were identified using bioinformatics technology.

Results

On day 14 of osteogenic differentiation, the ARS quantitation results of MSC in the strain stimulation group (OD value: 1.46±0.19) were higher than those of the control group (OD value: 0.62±0.08). The difference was statistically significant (t?= -1.99, P < 0.05). Besides, the ALP activity results of MSC in the strain stimulation group (265.3±31.2)?U/L were also higher than MSC without strain stimulation (121.2±21.2)?U/L (t?= -12.23, P < 0.05) . Through microarray dection, a total of differentially expressed 598 mRNAs and 329 lnc-RNAs were identified on day 7 of osteogenic differentiation. KEGG analysis showed that WNT signal pathway was the key pathway with the most significant differences, among which WNT5a had the largest change. Co-expression analysis suggested that lnc-RNA-SSR may be the critical lnc-RNA to regulate WNT5a expression.

Conclusion

Expression profile of mRNA and lnc-RNA in MSC significantly changed with strain stimulation. Lnc-RNA-SSR may affected MSC osteogenesis through regulating WNT5a expression with strain stimulation

图1 应力刺激下MSC成骨分化能力观察(茜素红染色,×40)
图2 应力刺激下MSC的mRNA和lnc-RNA表达谱
表1 差异表达的前5位的mRNA
表2 差异表达的前5位的lnc-RNA
表3 KEGG分析差异表达信号通路
表4 与WNT5a共表达的lnc-RNA分析
1
曲泽澎, 贾兆锋, 黄曦, 等. 间充质干细胞在器官移植中的应用研究进展[J]. 器官移植, 2018, 9(5):348-353.
2
Hu LF, Yin C, Zhao F, et al. Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment [J]. Int J Mol Sci, 2018, 19(2):360.
3
Garg P, Mazur MM, Buck AC, et al. Prospective review of mesenchymal stem cells differentiation into osteoblasts[J]. Orthop Surg, 2017, 9(1):13-19.
4
Su PH, Tian Y, Yang CF, et al. Mesenchymal stem cell migration during bone formation and bone diseases therapy[J]. Int J Mol Sci, 2018, 19(8):2343.
5
Bao S. Mechanical stress[J]. Handb Clin Neurol, 2015,131:367-396.
6
Kelly DJ, Jacobs CR. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells[J]. Birth Defects Res C Embryo Today, 2010, 90(1):75-85.
7
Bunch H. Gene regulation of mammalian long non-coding RNA[J]. Mol Genet Genomics, 2018, 293(1):1-15.
8
Yang Q, Jia L, Li X, et al. Long Noncoding RNAs: New Players in the Osteogenic Differentiation of Bone Marrow- and Adipose-Derived Mesenchymal Stem Cells[J]. Stem Cell Rev, 2018, 14(3):297-308.
9
Friedenstein AJ, Chailakhyan RK, Latsinik NV, et al. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo[J]. Transplantation, 1974, 17(4):331-340.
10
Sun KM, Liu FN, Wang JJ, et al. The effect of mechanical stretch stress on the differentiation and apoptosis of human growth plate chondrocytes[J]. In Vitro Cell Dev Biol Anim, 2017, 53(2):141-148.
11
Turner CH, Warden SJ, Bellido T, et al. Mechanobiology of the skeleton[J]. Sci Signal, 2009, 2(68):pt3.
12
Gu QG, Tian HJ, Zhang K, et al. Wnt5a/FZD4 mediates the mechanical Stretch-Induced osteogenic differentiation of bone mesenchymal stem cells[J]. Cell Physiol Biochem, 2018, 48(1):215-226.
13
Chen EEM, Zhang W, Ye CCY, et al. Knockdown of SIRT7 enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly via activation of the Wnt/β-catenin signaling pathway[J]. Cell Death Dis, 2017, 8(9):e3042.
14
Prasad CP, Manchanda M, Mohapatra P, et al. WNT5A as a therapeutic target in breast cancer[J] .Cancer Metastasis Rev, 2018, 37(4):767-778.
15
Yoon JH, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA[J]. J Mol Biol, 2013, 425(19):3723-3730.
[1] 刘伟, 牛云峰, 安杰. LINC01232 通过miR-516a-5p/BCL9 轴促进三阴性乳腺癌的恶性进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 330-338.
[2] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[3] 王欢欢, 郑少祥, 郝金锦, 陈文亮. 胃癌分子分型的研究进展及相关联系[J/OL]. 中华普通外科学文献(电子版), 2024, 18(03): 229-234.
[4] 邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.
[5] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[6] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[7] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[8] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[9] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[10] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[11] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[12] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[13] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[14] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
[15] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
阅读次数
全文


摘要