切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (05) : 278 -283. doi: 10.3877/cma.j.issn.2095-1221.2018.05.004

所属专题: 文献

论著

TM4SF1在成纤维细胞与脐带间充质干细胞表达差异的研究
杨娟1, 柴勋1, 刘根桃1,()   
  1. 1. 201321 上海科医联创生物科技有限公司
  • 收稿日期:2018-05-15 出版日期:2018-10-01
  • 通信作者: 刘根桃

Difference of TM4SF1 expression between fibroblasts and UCMSC

Juan Yang1, Xun Chai1, Gentao Liu1,()   

  1. 1. Shanghai Biomed-union Biote Chnology Co., Ltd, Shanghai 201321, China
  • Received:2018-05-15 Published:2018-10-01
  • Corresponding author: Gentao Liu
  • About author:
    Corresponding author: Liu Gentao, Email:
引用本文:

杨娟, 柴勋, 刘根桃. TM4SF1在成纤维细胞与脐带间充质干细胞表达差异的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2018, 08(05): 278-283.

Juan Yang, Xun Chai, Gentao Liu. Difference of TM4SF1 expression between fibroblasts and UCMSC[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(05): 278-283.

目的

寻找成纤维细胞与脐带间充质干细胞(UCMSC)在细胞表面蛋白与分化能力方面的差异。

方法

流式细胞术分析细胞表达CD105、CD90、CD73、CD44、CD14、CD34、CD45、CD79a、HLA-DR、FSP-1及TM4SF1的表达情况;细胞分化实验:观察成纤维细胞与UCMSC的成脂、成软骨及成骨能力;RT-PCR检测二者FSP-1、TM4SF1表达情况。两种细胞表型比较采用独立样本t检验。

结果

成纤维细胞与UCMSC的表面分子CD105、CD90、CD73、CD44、CD14、CD34、CD45、CD79a、HLA-DR表达相似(P均> 0.05),都具有成脂、成软骨、成骨的分化能力;成纤维细胞与UCMSC FSP-1阳性细胞比例分别为(98.6±0.3323)﹪及(98.90±0.2665)﹪(t = 0.4677,P = 0.5294);UCMSC TM4SF1阳性细胞比例为(97.23±0.2250)﹪,成纤维细胞TM4SF1阳性细胞比例为(0.0082±0.0018)﹪(t = 346.9,P < 0.01)。

结论

TM4SF1在成纤维细胞与UCMSC上的表达量存在差异。

Objective

To find the difference between fibroblasts and umbilical cord mesemchemal stem cells (UCMSC) in surface markers and differentiation.

Methods

Flow cytometric analysis of CD105, CD90, CD73, CD44, CD14, CD34, CD45, CD79a, HLA-DR, FSP-1 and TM4SF1 was performed for fibroblasts and UCMSC. Multilineage differentiation of fibroblasts and UCMSC into fat cells, cartilage cells and bone cells were induced. The expression of FSP-1 and TM4SF1 in fibroblasts and in UCMSC was assayed by RT-PCR. Data analysis between different groups was perfermed with independent-sample t test.

Results

Those markers which were found to be expressed on UCMSC were also expressed on fibroblasts in comparable levels (P > 0.05). Fibroblasts and UCMSC could differentiate into fat cells, cartilage cells and bone cells in vitro. Both fibroblasts and UCMSC were positive for FSP-1 (98.6±0.3323)﹪ vs (98.90±0.2665)﹪, (t?=?0.4677, P?=?0.5294). TM4SF1 was positive on UCMSC (97.23±0.2250)﹪, but negative on fibroblast (0.0082±0.0018)﹪(t?=?346.9, P?<?0.01).

Conclusion

There is a significant difference in expression of TM4SF1 between fibroblasts and UCMSC.

表1 RT-PCR引物序列信息
表2 成纤维细胞与UCMSC常见表型比较(﹪,±s
图1 倒置相差显微镜下观察成纤维细胞与UCMSC成脂、成软骨与成骨分化结果(×10)
图2 RT-PCR检测成纤维细胞与UCMSC FSP-1表达情况
图3 FACS检测成纤维细胞与UCMSC FSP-1表达
图4 RT-PCR检测成纤维细胞与UCMSC TM4SF1表达情况
图5 FACS检测成纤维细胞与UCMSC TM4SF1表达
1
Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells[J]. Cell Tissue Kinet, 1970, 3(4):393-403.
2
Gruber HE, Deepe R, Hoelscher GL, et al. Human adipose-derived mesenchymal stem cells: direction to a phenotype sharing similarities with the disc, gene expression profiling, and coculture with human annulus cells[J]. Tissue Eng Part A, 2010, 16(9):2843-2860.
3
Patel J, Shafiee A, Wang W, et al. Novel isolation strategy to deliver pure fetal-origin and maternal-origin mesenchymal stem cell (MSC) populations from human term placenta[J]. Placenta, 2014, 35(11):969-971.
4
Li W, Ye B, Cai XY, et al. Differentiation of human umbilical cord mesenchymal stem cells into prostate-like epithelial cells in vivo[J]. PLoS One, 2014, 9(7):e102657.
5
Ponnaiyan D, Bhat KM, Bhat GS. Comparison of immuno-phenotypes of stem cells from human dental pulp and periodontal ligament[J]. Int J Immunopathol Pharmacol, 2012, 25(1):127-134.
6
Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood[J]. Br J Haematol, 2000, 109(1):235-242.
7
Ledesma-Martínez E, Mendoza-Núñez VM, Santiago-Osorio E. Mesenchymal stem cells for periodontal tissue regeneration in elderly patients[J]. J Gerontol A Biol Sci Med Sci, 2018. doi: 10.1093/gerona/gly227. [Epub ahead of print].
8
Rohringer S, Hofbauer P, Schneider KH, et al. Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells[J]. Angiogenesis, 2014, 17(4):921-933.
9
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4):315-317.
10
Krampera M, Galipeau J, Shi Y, et al. Immunological characterization of multipotent mesenchymal stromal cells--The International Society for Cellular Therapy (ISCT) working proposal[J]. Cytotherapy, 2013, 15(9):1054-1061.
11
Reilkoff RA, Bucala R, Herzog EL. Fibrocytes: emerging effector cells in chronic inflammation[J]. Nat Rev Immunol, 2011, 11(6):427-435.
12
Lysy PA, Smets F, Sibille C, et al. Human skin fibroblasts: From mesodermal to hepatocyte-like differentiation[J]. Hepatology, 2007, 46(5):1574-1585.
13
Haniffa MA, Wang XN, Holtick U, et al. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells[J]. J Immunol, 2007, 179(3):1595-1604.
14
Hamano S, Tomokiyo A, Hasegawa D, et al. Extracellular matrix from periodontal ligament cells could induce the differentiation of induced pluripotent stem cells to periodontal ligament stem Cell-Like cells[J]. Stem Cells Dev, 2018, 27(2):100-111.
15
Steingen C, Brenig F, Baumgartner L, et al. Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells[J]. J Mol Cell Cardiol, 2008, 44(6):1072-1084.
16
Wen S, Niu Y, Yeh S, et al. BM-MSCs promote prostate cancer progression via the conversion of normal fibroblasts to cancer-associated fibroblasts[J]. Int J Oncol, 2015, 47(2):719-727.
17
Linard C, Brachet M, Strup-Perrot C, et al. Autologous bone marrow mesenchymal stem cells improve the quality and stability of vascularized flap surgery of irradiated skin in Pigs[J]. Stem Cells Transl Med, 2018, 7(8):569-582.
18
方利君, 付小兵, 孙同柱, 等. 在体诱导骨髓间充质干细胞分化为表皮细胞的初步观察[J]. 中华创伤杂志, 2003, 19(4):19-21.
19
袁艳鹏, 王淑艳, 唐玺和, 等. 临床级脐带间充质干细胞鉴定及方法研究[J/CD]. 中华细胞与干细胞杂志:电子版, 2017, 7(2):65-70.
20
Alt EU, Senst C, Murthy SN, et al. Aging alters tissue resident mesenchymal stem cell properties[J]. Stem Cell Res, 2012, 8(2):215-225.
21
Majore I, Moretti P, Hass R, et al. Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord[J]. Cell Commun Signal, 2009, 7:6.
22
Hellström I, Horn D, Linsley P, et al. Monoclonal mouse antibodies raised against human lung carcinoma[J]. Cancer Res, 1986, 46(8):3917-3923.
23
Marken JS, Schieven GL, Hellström I, et al. Cloning and expression of the tumor-associated antigen L6[J]. Proc Natl Acad Sci U S A, 1992, 89(8):3503-3507.
24
Lin CI, Merley A, Sciuto TE, et al. TM4SF1:a new vascular therapeutic target in cancer[J]. Angiogenesis, 2014, 17(4):897-907.
25
Xue L, Yu X, Jiang X, et al. TM4SF1 promotes the self-renewal of esophageal cancer stem-like cells and is regulated by miR-141[J]. Oncotarget, 2017, 8(12):19274-19284.
26
Bae S, Shim SH, Park CW, et al. Combined omics analysis identifies transmembrane 4 L6 family member 1 as a surface protein marker specific to human mesenchymal stem cells[J]. Stem Cells Dev, 2011, 20(2):197-203.
27
Huang YK, Fan XG, Qiu F, et al. Genomics of hepatitis B virus-related hepatocellular carcinoma and adjacent noncancerous tissues with cDNA microarray[J]. Chin Med J (Engl), 2011, 124(13):2057-2064.
28
Xu J, Stolk JA, Zhang X, et al. Identification of differentially expressed genes in human prostate cancer using subtraction and microarray[J]. Cancer Res, 2000, 60(6):1677-1682.
29
Shih SC, Zukauskas A, Li D, et al. The L6 protein TM4SF1 is critical for endothelial cell function and tumor angiogenesis[J]. Cancer Res, 2009, 69(8):3272-3277.
30
Denardo SJ, O'Grady LF, Macey DJ, et al. Quantitative imaging of mouse L-6 monoclonal antibody in breast cancer patients to develop a therapeutic strategy[J]. Int J Rad Appl Instrum B, 1991, 18(6):621-631.
31
Chang YW, Chen SC, Cheng EC, et al. CD13 (aminopeptidase N) can associate with tumor-associated antigen L6 and enhance the motility of human lung cancer cells[J]. Int J Cancer, 2005, 116(2):243-252.
32
Cao J, Yang J, Ramachandran V, et al. TM4SF1 promotes gemcitabine resistance of pancreatic cancer in vitro and in vivo[J]. PLoS One, 2015, 10(12):e0144969.
33
Huang YK, Fan XG, Qiu F. TM4SF1 promotes proliferation, invasion, and metastasis in human liver cancer cells[J]. Int J Mol Sci, 2016, 17(5). pii: E661.
34
Visintin A, Knowlton K, Tyminski E, et al. Novel Anti-TM4SF1 Antibody-Drug conjugates with activity against tumor cells and tumor vasculature[J]. Mol Cancer Ther, 2015, 14(8):1868-1876.
[1] 蒲卢兰, 李静佳, 陈宇, 周瑜清, 荣欣欣, 侯令密, 周方方. NF2/YAP信号通路通过FSP1诱导CD24高表达的三阴性乳腺癌细胞铁死亡[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 206-211.
[2] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[3] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[4] 刘高雨, 罗鹏, 史春梦. 成纤维细胞重编程与创面修复的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(02): 176-179.
[5] 何雪锋, 赵世新, 李珮珊, 刘恒登, 谢举临. 卡奴卡叶提取物通过增强真皮成纤维细胞功能促进大鼠创面修复的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(05): 405-412.
[6] 黄瑞娟, 德奇, 巴特, 周彪. 对人脐带间充质干细胞外泌体影响热损伤人皮肤成纤维细胞迁移的分析[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(03): 229-234.
[7] 李卓骋, 陈羽翔, 高亮, 张宇, 朱许源, 马晓杰, 李涛, 赵甜甜, 蒋鸿涛. 巨噬细胞-肌成纤维细胞转化在肾纤维化过程中的作用[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 181-185.
[8] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[9] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[10] 李颖思, 符芳, 杨昕, 邓琼, 周航, 程肯, 李东至, 廖灿. 单细胞RNA测序技术探究CCN2基因在特纳综合征胎儿颈部淋巴水囊瘤中的关键作用[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 220-228.
[11] 那迪娜·帕尔哈提, 黄陈. 肿瘤相关成纤维细胞在结直肠癌发生与发展及化疗耐药中的作用研究进展[J/OL]. 中华结直肠疾病电子杂志, 2023, 12(03): 241-247.
[12] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
[13] 陈晓丹, 李淑霞, 薛婷, 侯红瑛, 韩振艳. FGF19在妊娠期肝内胆汁淤积症患者血清中的表达水平及相关因素分析[J/OL]. 中华产科急救电子杂志, 2023, 12(04): 239-243.
[14] 徐立, 阎岩. aFGF修饰自体成纤维细胞治疗食管吻合口瘘的实验研究[J/OL]. 中华胸部外科电子杂志, 2024, 11(03): 180-187.
[15] 陈晓佩, 余丹, 潘君, 孔佳超, 李欢, 吴天凤. SGLT2抑制剂对中老年糖尿病患者血清FGF21水平的影响[J/OL]. 中华老年病研究电子杂志, 2023, 10(03): 35-38.
阅读次数
全文


摘要