1 |
Bellomo R, Kellum JA, Ronco C. Acute kidney injury[J]. Lancet, 2012, 380(9843):756-766.
|
2 |
王万里, 李青山, 周颖, 等. DCD供肝肝移植术后早期急性肾损伤相关危险因素分析[J]. 器官移植, 2018, 9(2):130-136.
|
3 |
Zuk A, Bonventre JV. Acute kidney injury[J]. Annu Rev Med, 2016, 67:293-307.
|
4 |
Korula S, Balakrishnan S, Sundar S, et al. Acute kidney injury-incidence, prognostic factors, and outcome of patients in an Intensive Care Unit in a tertiary center: A prospective observational study[J]. Indian J Crit Care Med, 2016, 20(6):332-336.
|
5 |
Libório AB, Branco KM, Torres de Melo Bezerra C. Acute kidney injury in neonates: from urine output to new biomarkers[J]. Biomed Res Int, 2014:601568.
|
6 |
Zeisberg M, Duffield JS. Resolved: EMT produces fibroblasts in the kidney[J]. J Am Soc Nephrol, 2010, 21(8):1247-1253.
|
7 |
He J, Xu Y, Koya D, et al. Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease[J]. Clin Exp Nephrol, 2013, 17(4):488-497.
|
8 |
Boutet A, De Frutos CA, Maxwell PH, et al. Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney[J]. EMBO J, 2006, 25(23):5603-5613.
|
9 |
Boutet A, Esteban MA, Maxwell PH, et al. Reactivation of snail genes in renal fibrosis and carcinomas: a process of reversed embryogenesis?[J]. Cell Cycle, 2007, 6(6):638-642.
|
10 |
Camussi G, Deregibus MC, Bruno S, et al. Exosomes/microvesicles as a mechanism of cell-to-cell communication[J]. Kidney Int, 2010, 78(9):838-848.
|
11 |
Camussi G, Deregibus MC, Cantaluppi V. Role of stem-cell-derived microvesicles in the paracrine action of stem cells[J]. Biochem Soc Trans, 2013, 41(1):283-287.
|
12 |
Zhu YG, Feng XM, Abbott J, et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice[J]. Stem Cells, 2014, 32(1):116-125.
|
13 |
Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury[J]. Stem Cell Res, 2013, 10(3):301-312.
|
14 |
Du T, Zou X, Cheng J, et al. Human wharton's jelly-derived mesenchymal stromal cells reduce renal fibrosis through induction of native and foreign hepatocyte growth factor synthesis in injured tubular epithelial cells[J]. Stem Cell Res Ther, 2013, 4(3):59.
|
15 |
Du T, Ju G, Wu S, et al. Microvesicles derived from human Wharton's jelly mesenchymal stem cells promote human renal cancer cell growth and aggressiveness through induction of hepatocyte growth factor[J]. PLoS One, 2014, 9(5):e96836.
|
16 |
Li R, Liang J, Ni S, et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts[J]. Cell Stem Cell, 2010, 7(1):51-63.
|
17 |
Majore I, Moretti P, Hass R, et al. Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord[J]. Cell Commun Signal, 2009, 7:6.
|
18 |
Zou X, Zhang G, Cheng Z, et al. Microvesicles derived from human Wharton's Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1[J]. Stem Cell Res Ther, 2014, 5(2):40.
|
19 |
Devarajan P. Update on mechanisms of ischemic acute kidney injury[J]. J Am Soc Nephrol, 2006, 17(6):1503-1520.
|
20 |
Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators[J]. J Cell Biochem, 2006, 98(5):1076-1084.
|
21 |
Du T, Cheng J, Zhong L, et al. The alleviation of acute and chronic kidney injury by human Wharton's jelly-derived mesenchymal stromal cells triggered by ischemia-reperfusion injury via an endocrine mechanism[J]. Cytotherapy, 2012, 14(10):1215-1227.
|
22 |
Zhang G, Zou X, Miao S, et al. The anti-oxidative role of micro-vesicles derived from human Wharton-Jelly mesenchymal stromal cells through NOX2/gp91(phox) suppression in alleviating renal ischemia-reperfusion injury in rats[J]. PLoS One, 2014, 9(3):e92129.
|
23 |
Gu D, Zou X, Ju G, et al. Mesenchymal Stromal Cells Derived Extracellular Vesicles Ameliorate Acute Renal Ischemia Reperfusion Injury by Inhibition of Mitochondrial Fission through miR-30[J]. Stem Cells Int, 2016:2093940.
|
24 |
Li R, Liang J, Ni S, et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts[J]. Cell Stem Cell, 2010, 7(1):51-63.
|
25 |
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3):178-196.
|