切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2023, Vol. 13 ›› Issue (04) : 235 -241. doi: 10.3877/cma.j.issn.2095-1221.2023.04.006

综述

细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展
刘小燕, 龙乾发(), 席俊秀, 杜明皓, 黄晓欢   
  1. 16000 延安,延安大学医学院;710032 西安市中心医院神经外科
    710032 西安市中心医院神经外科
  • 收稿日期:2023-05-23 出版日期:2023-08-01
  • 通信作者: 龙乾发
  • 基金资助:
    国家自然科学基金(82171353); 陕西省杰出青年科学基金(2023-JC-JQ-69); 西安市科技计划项目(XYAC210023)

Regulatory significance and research progress of extracellular vesicle-mediated glial interactions on neuroinflammation

Xiaoyan Liu, Qianfa Long(), Junxiu Xi, Minghao Du, Xiaohuan Huang   

  1. Yan'an University School of Medicine, Yan'an 716000, China; Department of Neurosurgery, Xi’an Central Hospital, Xi'an 710032, China
    Department of Neurosurgery, Xi’an Central Hospital, Xi'an 710032, China
  • Received:2023-05-23 Published:2023-08-01
  • Corresponding author: Qianfa Long
引用本文:

刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.

Xiaoyan Liu, Qianfa Long, Junxiu Xi, Minghao Du, Xiaohuan Huang. Regulatory significance and research progress of extracellular vesicle-mediated glial interactions on neuroinflammation[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(04): 235-241.

神经炎症既可作为癫痫、阿尔茨海默病和脑损伤等的致病因素,也可作为其继发反应,是中枢神经系统(CNS)疾病发生发展的重要机理。胶质细胞在神经炎症调节中充当重要角色,小胶质细胞-星形胶质细胞的交互作用对CNS炎症也具有关键调节意义。此外,细胞外囊泡(EVs)对CNS损伤具有炎症调节和神经保护功能。因此,本文综述了星形胶质细胞和小胶质细胞以及它们之间的交互作用对神经系统的调节功能,阐明内源性EVs对CNS炎性疾病的调节意义,以此为基础探究外源性EVs对星形胶质细胞和小胶质细胞间交互作用的调节机制,以便进一步研究CNS疾病的发病转归及治疗。

Neuroinflammation serves as both a causative factor and secondary response in central nervous system (CNS) diseases such as epilepsy, Alzheimer's disease, and brain injury, as well as is an important mechanism of the disease initiation and progression. Notably, glial cells play an important role in regulating neuroinflammation, and the interactions between microglia and astrocytes have a key regulatory significance in CNS inflammation. Additionally, extracellular vesicles (EVs) have inflammatory modulation and neuroprotective functions in CNS injuries. Therefore, this review summarized the regulatory functions of astrocytes, microglia, and their interactions in the CNS, elucidated the regulatory significance of endogenous EVs in neuroinflammatory diseases, and explored the regulatory mechanisms of exogenous EVs on the interaction between astrocytes and microglia, aiming further to investigate the pathogenesis and treatment of CNS diseases .

图1 细胞外囊泡介导的胶质细胞交互作用对神经系统炎症的调节机制注:当发生神经系统炎症时,小胶质细胞和星形胶质细胞活化,释放多种炎症因子,细胞外囊泡对活化后的小胶质细胞和星形胶质细胞进行调节,从而调节神经炎症;小胶质细胞被炎症激活后释放TNF等炎症因子刺激星形胶质细胞使之产生神经毒性。反应性星形胶质细胞通过释放IL-1β、TNFα等激活小胶质细胞,则引起持续的炎症反应和细胞凋亡。A为EVS-细胞外囊泡;B为Microglia-小胶质细胞;C为神经细胞;D为Astrocytes-星形胶质细胞;E为TREM2-髓系细胞触发受体2;F为神经炎症;G为TGF-β-转化生长因子
1
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? [J]. Nat Rev Neurol, 2021, 17(3):157-172.
2
Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte crosstalk in CNS inflammation[J]. Neuron, 2020, 25(4):608-622.
3
Hasel P, Aisenberg WH, Bennett FC, et al. Molecular and metabolic heterogeneity of astrocytes and microglia[J]. Cell Metab, 2023, 35(4):555-570.
4
Sacristán C. Microglia and astrocyte crosstalk in immunity[J]. Trends Immunol, 2020, 41(9):747-748.
5
Liu LR, Liu JC, Bao JS, et al. Interaction of microglia and astrocytes in the neurovascular unit[J]. Front Immunol, 2020, 11:1024.
6
Delpech JC, Herron S, Botros MB, et al. Neuroimmune crosstalk through extracellular vesicles in health and disease[J]. Trends Neurosci, 2019, 42(5):361-372.
7
Han RT, Kim RD, Molofsky AV, et al. Astrocyte-immune cell interactions in physiology and pathology[J]. Immunity, 2021, 54(2):211-224.
8
Jha MK, Jo M, Kim JH, et al. Microglia-astrocyte crosstalk: an intimate molecular conversation[J]. Neuroscientist, 2019, 25(3):227-240.
9
Sun M, You H, Hu X, et al. Microglia-astrocyte interaction in neural development and neural pathogenesis[J]. Cells, 2023, 12(15):1942.
10
Singh D. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer's disease[J]. J Neuroinflammation, 2022, 19(1):206.
11
Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes[J]. Transl Neurodegener, 2020, 9(1):42.
12
Li L, Acioglu C, Heary RF, et al. Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases[J]. Brain Behav Immun, 2021, 91:740-755.
13
Qi S, Zhao F, Li Z, et al. Silencing of PTX3 alleviates LPS-induced inflammatory pain by regulating TLR4/NF-κB signaling pathway in mice[J]. Biosci Rep, 2020, 40(2):BSR20194208.
14
Yeh FL, Hansen DV, Sheng M. TREM2, Microglia, and neurodegenerative diseases[J]. Trends Mol Med, 2017, 23(6):512-533.
15
Wang S, Sudan R, Peng V, et al. TREM2 drives microglia response to amyloid-β via SYK-dependent and -independent pathways[J]. Cell, 2022, 185(22):4153-4169.
16
Subhramanyam CS, Wang C, Hu Q, et al. Microglia-mediated neuroinflammation in neurodegenerative diseases[J]. Semin Cell Dev Biol, 2019, 94:112-120.
17
Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer's disease[J]. J Cell Biol, 2018, 217(2):459-472.
18
Huang Y, Chen S, Luo Y, et al. Crosstalk between inflammation and the BBB in stroke[J]. Curr Neuropharmacol, 2020, 18(12):1227-1236.
19
Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte crosstalk in CNS inflammation[J]. Neuron, 2020, 108(4):608-622.
20
Lezmy J, Arancibia-Cárcamo IL, Quintela-López T, et al. Astrocyte Ca2+-evoked ATP release regulates myelinated axon excitability and conduction speed[J]. Science, 2021, 374(6565):eabh2858.
21
Sacristán C. Microglia and astrocyte crosstalk in immunity[J]. Trends Immunol, 2020, 41(9):747-748.
22
Deng S, Chen X, Lei Q, et al. AQP2 promotes astrocyte activation by modulating the TLR4/NFκB-p65 pathway following intracerebral hemorrhage[J]. Front Immunol, 2022, 13:847360.
23
Scassellati C, Galoforo AC, Esposito C, et al. Promising intervention approaches to potentially resolve neuroinflammation and steroid hormones alterations in Alzheimer's disease and its neuropsychiatric symptoms[J]. Aging Dis, 2021, 12(5):1337-1357.
24
Giovannoni F, Quintana FJ. The role of astrocytes in CNS inflammation[J]. Trends Immunol, 2020, 41(9):805-819.
25
Gadani SP, Walsh JT, Smirnov I, et al. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury[J]. Neuron, 2015, 85(4):703-709.
26
Vainchtein ID, Molofsky AV. Astrocytes and microglia: in sickness and in health[J]. Trends Neurosci, 2020, 43(3):144-154.
27
Goshi N, Morgan RK, Lein PJ, et al. A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation[J]. J Neuroinflammation, 2020, 17(1):155.
28
Delpech JC, Herron S, Botros MB, et al. Neuroimmune crosstalk through extracellular vesicles in health and disease[J]. Trends Neurosci, 2019, 42(5):361-372.
29
Balusu S, Van Wonterghem E, De Rycke R, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles[J]. EMBO Mol Med, 2016, 8(10):1162-1183.
30
Shao H, Im H, Castro CM, et al. New technologies for analysis of extracellular vesicles[J]. Chem Rev, 2018, 118(4):1917-1950.
31
Men Y, Yelick J, Jin S, et al. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS[J]. Nat Commun, 2019, 10(1):4136.
32
Nieland L, Mahjoum S, Grandell E, et al . Engineered EVs designed to target diseases of the CNS [J]. J Control Release, 2023, 356:493-506.
33
Liu ML, Williams KJ, Werth VP. Microvesicles in autoimmune diseases[J]. Adv Clin Chem, 2016, 77:125-175.
34
Kraynak CA, Yan DJ, Suggs LJ. Modulating inflammatory macrophages with an apoptotic body-inspired nanoparticle[J]. Acta Biomater, 2020, 108:250-260.
35
Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes[J]. Semin Cell Dev Biol, 2015, 40:41-51.
36
Vader P, Mol EA, Pasterkamp G, et al. Extracellular vesicles for drug delivery[J]. Adv Drug Deliv Rev, 2016, 106(Pt A):148-156.
37
Yang J, Hamade M, Wu Q, Wang Q, et al. Current and future biomarkers in multiple sclerosis[J]. Int J Mol Sci, 2022, 23(11):5877.
38
Xiao Y, Wang SK, Zhang Y, et al. Role of extracellular vesicles in neurodegenerative diseases[J]. Prog Neurobiol, 2021, 201:102022.
39
Zamboni S, D'Ambrosio A, Margutti P. Extracellular vesicles as contributors in the pathogenesis of multiple sclerosis[J]. Mult Scler Relat Disord, 2023, 71:104554.
40
Diep J, Ooi YS, Wilkinson AW, et al. Enterovirus pathogenesis requires the host methyltransferase SETD3[J]. Nat Microbiol, 2019, 4(12):2523-2537.
41
Zhang CN, Li FJ, Zhao ZL, et al. The role of extracellular vesicles in traumatic brain injury-induced acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 321(5):L885-L891.
42
Orefice NS. Development of new strategies using extracellular vesicles loaded with exogenous nucleic acid[J]. Pharmaceutics, 2020, 12(8):705.
43
Lai P, Weng J, Guo L, et al. Novel insights into MSC-EVs therapy for immune diseases[J]. Biomark Res, 2019, 7:6.
44
Riazifar M, Mohammadi MR, Pone EJ, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders[J]. ACS Nano, 2019, 13(6):6670-6688.
45
Keane L, Antignano I, Riechers SP et al. mTOR-dependent translation amplifies microglia priming in aging mice[J]. J Clin Invest, 2020, 131(1):e132727.
46
Delpech JC, Herron S, Botros MB, et al. Neuroimmune crosstalk through extracellular vesicles in health and disease[J]. Trends Neurosci, 2019, 42(5):361-372.
47
Ali T, Rahman SU, Hao Q, et al. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation[J]. J Pineal Res, 2020, 69(2):e12667.
48
Wang T, Jian Z, Baskys A, et al. MSC-derived exosomes protect against oxidative stress-induced skin injury via adaptive regulation of the NRF2 defense system[J]. Biomaterials, 2020, 257:120264.
49
Keane L, Antignano I, Riechers SP, et al. mTOR-dependent translation amplifies microglia priming in aging mice[J]. J Clin Invest, 2020, 131(1):e132727.
50
Ulland TK, Song WM, Huang SC, et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease[J]. Cell, 2017, 170(4):649-663.
51
Kielbinski M, Gzielo K, Soltys Z, et al. Roles for astrocytes in epilepsy: insights from malformations of cortical development[J]. Neuropathol Appl Neurobiol, 2016, 42(7):593-606.
52
Andersson KME, Wasén C, Juzokaite L, et al. Inflammation in the hippocampus affects IGF1 receptor signaling and contributes to neurological sequelae in rheumatoid arthritis[J]. Proc Natl Acad Sci U S A, 2018, 115(51):E12063-E12072.
53
Higashi Y, Sukhanov S, Shai SY, et al. Insulin-like growth factor-1 receptor deficiency in macrophages accelerates atherosclerosis and induces an unstable plaque phenotype in apolipoprotein E-deficient mice, circulation[J]. 2016, 133(23):2263-2278.
54
Chu X, Liu D, Li T, et al. Hydrogen sulfide-modified extracellular vesicles from mesenchymal stem cells for treatment of hypoxic-ischemic brain injury[J]. J Control Release, 2020, 328:13-27.
55
Long Q, Upadhya D, Hattiangady B, et al. Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus[J]. Proc Natl Acad Sci U S A, 2017, 114(17):E3536-E3545.
56
Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs[J]. Genome Res, 2009, 19(1):92-105.
57
Kim H, Lee MJ, Bae EH, et al. Comprehensive molecular profiles of functionally effective MSC-derived extracellular vesicles in immunomodulation[J]. Mol Ther, 2020, 28(7):1628-1644.
[1] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[2] 张燕, 粟闵, 陈婷婷, 程会贤, 陈名园, 王巍. 合体细胞滋养层细胞外囊泡阻止母体恶性肿瘤侵袭及转移至胎儿相关机制研究[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(01): 40-46.
[3] 王邦郁, 陈晓鹏, 唐国军, 王佳妮. 尿液细胞外囊泡circRNA分类器对高级别前列腺癌诊断价值的初步研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 339-342.
[4] 赵家莹, 王剑, 阳韬. 间充质干细胞及其胞外囊泡来源的miRNA免疫调节作用研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 279-282.
[5] 王晓玉, 胡豪飞, 韦宁荣, 毕慧欣. 特发性膜性肾病患者血清β2微球蛋白与局灶节段性肾小球硬化病变的关系分析[J]. 中华肾病研究电子杂志, 2022, 11(05): 249-257.
[6] 陆梦婷, 包嘉欣, 曹长春. 细胞外囊泡在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2022, 11(03): 167-171.
[7] 崔大勇, 王新, 张博. 小胶质细胞在颅脑损伤中免疫调控及对神经元的作用机制[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 56-58.
[8] 王洋洋, 高谋, 徐如祥. 过敏毒素、小胶质以及神经干细胞在神经炎症和神经再生中的作用[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 193-198.
[9] 左安俊, 欧振飞, 王天瑞, 丁磊, 李天予, 于腾波. 二甲胺四环素对小胶质细胞激活状态影响的研究[J]. 中华老年骨科与康复电子杂志, 2022, 08(03): 152-158.
[10] 郑薏, 彭雯雯, 钟月丽. MicroRNA-34a调控电针对缺血再灌注损伤大鼠反应性星形胶质细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 135-141.
[11] 张威, 魏雅楠, 韩娜. 骨髓间充质干细胞来源外泌体对促进大鼠坐骨神经钳夹伤的修复作用[J]. 中华临床医师杂志(电子版), 2021, 15(04): 265-271.
[12] 郭芳芳, 李珉珉. 狼疮肾炎无创生物标志物的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 271-275.
[13] 白鲁岳, 赵思齐, 高升, 杨涛, 孟纯阳. 小胶质细胞极化在神经病理性疼痛发生发展过程中的作用研究进展[J]. 中华诊断学电子杂志, 2023, 11(01): 33-36.
[14] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
[15] 刘扬, 张锐毅, 张艳, 李红敏, 苏秋羊, 薛孟周. 细胞外基质金属蛋白酶诱导因子在脑卒中中的作用[J]. 中华脑血管病杂志(电子版), 2022, 16(01): 57-60.
阅读次数
全文


摘要