1 |
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
|
2 |
Lerou PH, Daley GQ. Therapeutic potential of embryonic stem cells[J]. Blood Rev, 2005, 19(6):321-331.
|
3 |
Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development[J]. Cell, 2008, 132(4):661-680.
|
4 |
Zhang D, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells[J]. Cell Res, 2009, 19(4):429-438.
|
5 |
Song ZH, Cai J, Liu YX, et al. Efficient Generation of hepatocyte-like cells from human induced pluripotent stem cells[J]. Cell Res, 2009, 19(11):1233-1242.
|
6 |
Wernig M, Zhao JP, Pruszak J, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease[J]. Proc Natl Acad Sci U S A, 2008, 105(15):5856-5861.
|
7 |
Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells[J]. Science, 2008, 321(5889):699-702.
|
8 |
Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration[J]. Science, 2008, 322(593):945-949.
|
9 |
Hanna J, Markoulaki S, Schorderet P, et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency[J]. Cell, 2008, 133(2):250-264.
|
10 |
申红芬,姚志芳,肖高芳, 等. 诱导性多潜能干细胞(iPS cells)——现状及前景展望[J]. 生物化学与生物物理进展, 2009, 36(8):950-960.
|
11 |
Bhutani N, Brady JJ, Damian M, et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation[J]. Nature, 2010, 463(7284):1042-1047.
|
12 |
Nakagawa M, Takizawa N, Narita M, et al. Promotion of direct reprogramming by transformation-deficient Myc[J]. Proc Natl Acad Sci U S A, 2010, 107(32):14152-14157.
|
13 |
Cavazzana-Calvo M, Hacein-Bey S, De Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease[J]. Science, 2000, 288(5466):669-672.
|
14 |
Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1[J]. Science, 2003, 302(5644):415-419.
|
15 |
Hacein-Bey-Abina S, Garrigue A, Wang GP,et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1[J]. J Clin Invest, 2008, 118(9):3132-3142.
|
16 |
Howe SJ, Mansour MR, Schwarzwaelder K, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients[J]. J Clin Invest, 2008, 118(9):3143-3150.
|
17 |
Stein S, Ott MG, Schultze-Strasser S, et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease[J]. Nat Med, 2010, 16(2):198-204.
|
18 |
Cattoglio C, Facchini G, Sartori D, et al. Hot spots of retroviral integration in human CD34+ hematopoietic cells[J]. Blood, 2007, 110(6):1770-1778.
|
19 |
Ronen K, Negre O, Roth S, et al. Distribution of lentiviral vector integration sites in mice following therapeutic gene transfer to treat β-thalassemia[J]. Mol Ther, 2011, 19(7):1273-1286.
|
20 |
Rittelmeyer I, Rothe M, Brugman MH, et al. Hepatic lentiviral gene transfer is associated with clonal selection, but not with tumor formation in serially transplanted rodents[J]. Hepatology, 2013, 58(1):397-408.
|