1 |
刘艳妮, 倪敏, 张睿, 等. 脂肪干细胞治疗复杂性肛瘘:作用与机制[J]. 中国组织工程研究, 2018, 22(33):5399-5407.
|
2 |
Li Y, Wang F, Liang H, et al. Efficacy of mesenchymal stem cell transplantation therapy for type 1 and type 2 diabetes mellitus: a meta-analysis[J]. Stem Cell Res Ther, 2021, 12(1):273.doi: 10.1186/s13287-021-02342-5.
|
3 |
张琪,倪敏,刘艳妮,等.间充质干细胞治疗炎症性肠病机制[J]. 现代中西医结合杂志, 2020, 29(19):2154-2158.
|
4 |
李佩霖,朱恒.间充质干细胞生物学特性的可塑性研究进展[J].中国实验血液学杂志, 2021, 29(2):629-632.
|
5 |
Kim H, Kwon S. Dual effects of hypoxia on proliferation and osteogenic differentiation of mouse clonal mesenchymal stem cells[J]. Bioprocess Biosyst Eng, 2021, 44(9):1831-1839.
|
6 |
Konjar S, Pavsic M, Veldhoen M. Regulation of oxygen homeostasis at the intestinal epithelial barrier site[J]. Int J Mol Sci, 2021, 22(17):9170.doi: 10.3390/ijms22179170.
|
7 |
Ortiz-Prado E, Dunn JF, Vasconez J, et al. Partial pressure of oxygen in the human body: a general review[J]. Am J Blood Res, 2019, 9(1):1-14.
|
8 |
Samal JRK, Rangasami VK, Samanta S, et al. Discrepancies on the role of oxygen gradient and culture condition on mesenchymal stem cell fate[J]. Adv Healthc Mater, 2021, 10(6):e2002058. doi: 10.1002/adhm.202002058.
|
9 |
Sekhon MS, Ainslie PN, Menon DK, et al. Brain hypoxia secondary to diffusion limitation in hypoxic ischemic brain injury postcardiac arrest[J]. Crit Care Med, 2020, 48(3):378-384.
|
10 |
Denu RA, Hematti P. Optimization of oxidative stress for mesenchymal stromal/stem cell engraftment, function and longevity[J]. Free Radic Biol Med, 2021, 167:193-200.
|
11 |
Moriyama H, Moriyama M, Ozawa T, et al. Notch signaling enhances stemness by regulating metabolic pathways through modifying p53, NF-kappaB, and HIF-1alpha[J]. Stem Cells Dev, 2018, 27(13):935-947.
|
12 |
Kim H, Kwon S. Dual effects of hypoxia on proliferation and osteogenic differentiation of mouse clonal mesenchymal stem cells[J]. Bioprocess Biosyst Eng, 2021, 44(9):1831-1839.
|
13 |
Lee J, Kim HS, Kim SM, et al. Hypoxia upregulates mitotic cyclins which contribute to the multipotency of human mesenchymal stem cells by expanding proliferation lifespan[J]. Mol Cells, 2018, 41(3):207-213.
|
14 |
Choi JR, Yong KW, Wan Safwani WKZ. Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications[J]. Cell Mol Life Sci, 2017, 74(14):2587-2600.
|
15 |
刘毓斌,胡雪峰.糖原合酶激酶-3β在肿瘤细胞中的分子作用机制[J]. 中国生物化学与分子生物学报, 2020, 36(3):259-266.
|
16 |
Bétous R, Renoud ML, Hoede C, et al. Human adipose-derived stem cells expanded under ambient oxygen concentration accumulate oxidative DNA lesions and experience procarcinogenic DNA replication stress[J]. Stem Cells Transl Med, 2017, 6(1):68-76.
|
17 |
Tsai CC, Chen YJ, Yew TL, et al. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST[J]. Blood, 2011, 117(2):459-469.
|
18 |
Zhang J, Xiong L, Tang W, et al. Hypoxic culture enhances the expansion of rat bone marrow-derived mesenchymal stem cells via the regulatory pathways of cell division and apoptosis[J]. In Vitro Cell Dev Biol Anim, 2018, 54(9):666-676.
|
19 |
张优,严卫亚,沈振亚,等.低氧预处理诱导骨髓间充质干细胞Pim-1激酶高表达抑制细胞凋亡[J]. 中国组织工程研究, 2016, 20(14):1989-1998.
|
20 |
Zhang Y, Lei W, Yan W, et al. microRNA-206 is involved in survival of hypoxia preconditioned mesenchymal stem cells through targeting Pim-1 kinase[J]. Stem Cell Res Ther, 2016, 7(1):61.
|
21 |
Lee JH, Yoon YM, Lee SH. Hypoxic preconditioning promotes the bioactivities of mesenchymal stem cells via the HIF-1α-GRP78-Akt Axis[J]. Int J Mol Sci, 2017, 18(6):1320. doi: 10.3390/ijms18061320.
|
22 |
Ibrahim IM, Abdelmalek DH, Elfiky AA. GRP78: A cell's response to stress[J]. Life Sci, 2019, 226:156-163.
|
23 |
Xu L, Liu Y, Sun Y, et al. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue[J]. Stem Cell Res Ther, 2017, 8(1):275.doi: 10.1186/s13287-017-0716-x.
|
24 |
Lee SM, Jun DW, Kang HT, et al. Optimal hypoxic preconditioning of human embryonic stem cell-derived mesenchymal stem cells (hES-MSCs) and their characteristics[J]. Int J Stem Cells, 2021, 14(2):221-228.
|
25 |
Islam MR, Liu S, Wang X, et al. Deep learning for misinformation detection on online social networks: a survey and new perspectives[J]. Soc Netw Anal Min, 2020, 10(1):82.doi: 10.1007/s13278-020-00696-x.
|
26 |
Costa LA, Eiro N, Fraile M, et al. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses[J]. Cell Mol Life Sci, 2021, 78(2):447-467.
|
27 |
Zhang Y, Hao Z, Wang P, et al. Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1alpha-mediated promotion of angiogenesis in a rat model of stabilized fracture[J]. Cell Prolif, 2019, 52(2):e12570.doi: 10.1111/cpr.12570.
|
28 |
Gugliandolo A, Diomede F, Scionti D, et al. The role of hypoxia on the neuronal differentiation of gingival mesenchymal stem cells: a transcriptional study[J]. Cell Transplant, 2019, 28(5):538-552.
|
29 |
Yuan X, Luo Q, Shen L, et al. Hypoxic preconditioning enhances the differentiation of bone marrow stromal cells into mature oligodendrocytes via the mTOR/HIF-1alpha/VEGF pathway in traumatic brain injury[J]. Brain Behav, 2020, 10(7):e1675.doi: 10.1002/brb3.1675.
|
30 |
Wang F, Zachar V, Pennisi C-P, et al. Hypoxia enhances differentiation of adipose tissue-derived stem cells toward the smooth muscle phenotype[J]. Int J Mol Sci, 2018, 19(2):517. doi: 10.3390/ijms19020517.
|
31 |
Teti G, Focaroli S, Salvatore V, et al. The hypoxia-mimetic agent cobalt chloride differently affects human mesenchymal stem cells in their chondrogenic potential[J]. Stem Cells Int, 2018, 2018:3237253.doi: 10.1155/2018/3237253.
|
32 |
Govoni M, Muscari C, Bonafè F, et al. A brief very-low oxygen tension regimen is sufficient for the early chondrogenic commitment of human adipose-derived mesenchymal stem cells[J]. Adv Med Sci, 2021, 66(1):98-104.
|
33 |
史新连, 胡碧波, 任曼曼, 喻文彬, 邓辉. 低氧调控大鼠骨髓间充质干细胞OPG/RANKL mRNA的表达[J]. 上海口腔医学, 2017, 26(3): 258-262.
|
34 |
Yu X, Wan Q, Ye X, et al. Cellular hypoxia promotes osteogenic differentiation of mesenchymal stem cells and bone defect healing via STAT3 signaling[J]. Cell Mol Biol Lett, 2019, 24:64.doi: 10.1186/s11658-019-0191-8.
|
35 |
Zhang P, Ha N, Dai Q, et al. Hypoxia suppresses osteogenesis of bone mesenchymal stem cells via the extracellular signal regulated 1/2 and p38mitogen activated protein kinase signaling pathways[J]. Mol Med Rep, 2017, 16(4):5515-5522.
|
36 |
Xu Q, Liu Z, Guo L, et al. Hypoxia mediates runt-related transcription factor 2 expression via induction of vascular endothelial growth factor in periodontal ligament stem cells[J]. Mol Cells, 2019, 42(11):763-772.
|
37 |
Yang M, Liu H, Wang Y, et al. Hypoxia reduces the osteogenic differentiation of peripheral blood mesenchymal stem cells by upregulating Notch-1 expression[J]. Connect Tissue Res, 2019, 60(6):583-596.
|
38 |
Lee SY, Long F. Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation[J]. J Clin Invest, 2018, 128(12):5573-5586.
|
39 |
Singh SP, Kharche SD, Pathak M, et al. Low oxygen tension potentiates proliferation and stemness but not multilineage differentiation of caprine male germline stem cells[J]. Mol Biol Rep, 2021, 48(6):5063-5074.
|
40 |
刘远志,周吉银,黄毅岚,等.促进间充质干细胞归巢的研究进展及其相关机制[J].生理科学进展, 2018, 49(3):237-241.
|
41 |
刘想忠,李章华,许海甲. SDF-1促进BMSCs迁移的研究进展[J]. 中国骨质疏松杂志, 2019, 25(3):408-415.
|
42 |
Obradovic H, Krstic J, Trivanovic D, et al. Improving stemness and functional features of mesenchymal stem cells from Wharton's jelly of a human umbilical cord by mimicking the native, low oxygen stem cell niche[J]. Placenta, 2019, 82:25-34.
|
43 |
Yu X, Wan Q, Cheng G, et al. CoCl2, a mimic of hypoxia, enhances bone marrow mesenchymal stem cells migration and osteogenic differentiation via STAT3 signaling pathway[J]. Cell Biol Int, 2018, 42(10):1321-1329.
|
44 |
Li L, Jaiswal PK, Makhoul G, et al. Hypoxia modulates cell migration and proliferation in placenta-derived mesenchymal stem cells[J]. J Thorac Cardiovasc Surg, 2017, 154(2):543-552.e3.
|
45 |
Ciria M, García NA, Ontoria-Oviedo I, et al. Mesenchymal stem cell migration and proliferation are mediated by hypoxia-inducible factor-1alpha upstream of notch and SUMO pathways[J]. Stem Cells Dev, 2017, 26(13):973-985.
|
46 |
Rosová I, Dao M, Capoccia B, et al. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells[J]. Stem Cells, 2008, 26(8):2173-2182.
|
47 |
Choi JH, Lee YB, Jung J, et al. Hypoxia inducible factor-1alpha regulates the migration of bone marrow mesenchymal stem cells via integrin alpha 4[J]. Stem Cells Int, 2016, 2016:7932185.doi: 10.1155/2016/7932185.
|
48 |
Shao H, Im H, Castro CM, et al. New technologies for analysis of extracellular vesicles[J]. Chem Rev, 2018, 118(4):1917-1950.
|
49 |
Han Y, Ren J, Bai Y, et al. Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R[J]. Int J Biochem Cell Biol, 2019, 109:59-68.
|
50 |
Gómez-Ferrer M, Villanueva-Badenas E, Sánchez-Sánchez R, et al. HIF-1α and pro-inflammatory signaling improves the immunomodulatory activity of MSC-derived extracellular vesicles[J]. Int J Mol Sci, 2021, 22(7):3416. doi: 10.3390/ijms22073416.
|
51 |
Dong L, Wang Y, Zheng T, et al. Hypoxic hUCMSC-derived extracellular vesicles attenuate allergic airway inflammation and airway remodeling in chronic asthma mice[J]. Stem Cell Res Ther, 2021, 12(1):4. doi: 10.1186/s13287-020-02072-0.
|
52 |
Gupta S, Rawat S, Krishnakumar V, et al. Hypoxia preconditioning elicit differential response in tissue-specific MSCs via immunomodulation and exosomal secretion[J]. Cell Tissue Res, 2022, 388(3):535-548.
|
53 |
Huang T, Jia Z, Fang L, et al. Extracellular vesicle-derived miR-511-3p from hypoxia preconditioned adipose mesenchymal stem cells ameliorates spinal cord injury through the TRAF6/S1P axis[J]. Brain Res Bull, 2022, 180:73-85.
|
54 |
Ge L, Xun C, Li W, et al. Extracellular vesicles derived from hypoxia-preconditioned olfactory mucosa mesenchymal stem cells enhance angiogenesis via miR-612[J]. J Nanobiotechnology, 2021, 19(1):380.doi: 10.1186/s12951-021-01126-6.
|
55 |
Kojima Y, Tsuchiya A, Ogawa M, et al. Mesenchymal stem cells cultured under hypoxic conditions had a greater therapeutic effect on mice with liver cirrhosis compared to those cultured under normal oxygen conditions[J]. Regen Ther, 2019, 11:269-281.
|
56 |
胡继宏,贾佳,路娟,等.低氧下血管内皮细胞生长因子转染人骨髓间充质干细胞向血管内皮样细胞的分化[J]. 中国组织工程研究, 2017, 21(9):1352-1356.
|
57 |
侯婧瑛,郭天柱,于萌蕾,等. 缺氧预处理通过激活MALAT1靶向抑制miR-195促进骨髓间充质干细胞的生存和血管形成[J]. 中国组织工程研究, 2022, 26(7):1005-1011.
|
58 |
Li Q, Xu Y, Lv K, et al. Small extracellular vesicles containing miR-486-5p promote angiogenesis after myocardial infarction in mice and nonhuman primates[J]. Sci Transl Med, 2021, 13(584):eabb0202. doi: 10.1126/scitranslmed.abb0202.
|
59 |
Xue C, Shen Y, Li X, et al. Exosomes derived from hypoxia-treated human adipose mesenchymal stem cells enhance angiogenesis through the PKA signaling pathway[J]. Stem Cells Dev, 2018, 27(7):456-465.
|
60 |
Contreras-Lopez R, Elizondo-Vega R, Paredes MJ, et al. HIF1α-dependent metabolic reprogramming governs mesenchymal stem/stromal cell immunoregulatory functions[J]. FASEB J, 2020, 34(6): 8250-8264.
|
61 |
Liu W, Rong Y, Wang J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization[J]. J Neuroinflammation, 2020, 17(1):47.doi: 10.1186/s12974-020-1726-7.
|
62 |
Kim R, Song B-W, Kim M, et al. Regulation of alternative macrophage activation by MSCs derived hypoxic conditioned medium, via the TGF-beta1/Smad3 pathway[J]. BMB Rep, 2020, 53(11):600-604.
|
63 |
Zhang X, Xu Y, Liu H, et al. HIF-2α-ILK is involved in mesenchymal stromal cell angiogenesis in multiple myeloma under hypoxic conditions[J]. Technol Cancer Res Treat, 2018, 17:1533033818764473. doi: 10.1177/1533033818764473.
|