1 |
Ali AT, Guidozzi F. Midlife women's health consequences associated with polycystic ovary syndrome[J]. Climacteric, 2020, 23(2):116-122.
|
2 |
Yalameha B, Nejabati HR, Nouri M. Circulating microparticles as indicators of cardiometabolic risk in PCOS[J]. Clin Chim Acta, 2022, 533:63-70.
|
3 |
Ding H, Zhang J, Zhang F, et al. Resistance to the insulin and elevated level of androgen: a major cause of polycystic ovary syndrome[J]. Front Endocrinol (Lausanne), 2021, 12:741764. doi: 10.3389/fendo.2021.741764.
|
4 |
Glueck CJ, Goldenberg N. Characteristics of obesity in polycystic ovary syndrome: etiology, treatment, and genetics[J]. Metabolism, 2019, 92:108-120.
|
5 |
Shaaban Z, Khoradmehr A, Jafarzadeh Shirazi MR, et al. Pathophysiological mechanisms of gonadotropins- and steroid hormones-related genes in etiology of polycystic ovary syndrome[J]. Iran J Basic Med Sci, 2019, 22(1):3-16.
|
6 |
Dewailly D, Robin G, Peigne M, et al. Interactions between androgens, FSH, anti-Mullerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary[J]. Hum Reprod Update, 2016, 22(6):709-724.
|
7 |
Di Pietro M, Pascuali N, Parborell F, et al. Ovarian angiogenesis in polycystic ovary syndrome[J]. Reproduction, 2018, 155(5):R199-R209.
|
8 |
Rudnicka E, Suchta K, Grymowicz M, et al. Chronic low grade inflammation in pathogenesis of PCOS[J]. Int J Mol Sci, 2021, 22(7): 3789. doi: 10.3390/ijms22073789.
|
9 |
Motta AB. Dehydroepiandrosterone to induce murine models for the study of polycystic ovary syndrome[J]. J Steroid Biochem Mol Biol, 2010, 119(3-5):105-111.
|
10 |
Wang MY, Wang YX, Li-Ling J, et al. Adult stem cell therapy for premature ovarian failure: from bench to bedside[J]. Tissue Eng Part B Rev, 2022, 28(1):63-78.
|
11 |
Zhao YX, Chen SR, Su PP, et al. Using mesenchymal stem cells to treat female infertility: an update on female reproductive diseases[J]. Stem Cells Int, 2019, 2019:9071720. doi: 10.1155/2019/9071720.
|
12 |
Kim HJ, Kim G, Lee J, et al. Secretome of stem cells: roles of extracellular vesicles in diseases, stemness, differentiation, and reprogramming[J]. Tissue Eng Regen Med, 2022, 19(1):19-33.
|
13 |
Huang QY, Chen SR, Chen JM, et al. Therapeutic options for premature ovarian insufficiency: an updated review[J]. Reprod Biol Endocrinol, 2022, 20(1):28. doi: 10.1186/s12958-022-00892-8.
|
14 |
Mazini L, Rochette L, Amine M, et al. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs)[J]. Int J Mol Sci, 2019, 20(10):2523. doi: 10.3390/ijms20102523.
|
15 |
Fu YX, Ji J, Shan F, et al. Human mesenchymal stem cell treatment of premature ovarian failure: new challenges and opportunities[J]. Stem Cell Res Ther, 2021, 12(1):161. doi: 10.1186/s13287-021-02212-0.
|
16 |
He Y, Chen D, Yang L, et al. The therapeutic potential of bone marrow mesenchymal stem cells in premature ovarian failure[J]. Stem Cell Res Ther, 2018, 9(1):263.doi: 10.1186/s13287-018-1008-9.
|
17 |
Park HS, Chugh RM, Pergande MR, et al. Non-cytokine protein profile of the mesenchymal stem cell secretome that regulates the androgen production pathway[J]. Int J Mol Sci, 2022, 23(9):4633. doi: 10.3390/ijms23094633.
|
18 |
Chugh RM, Park HS, El Andaloussi A, et al. Mesenchymal stem cell therapy ameliorates metabolic dysfunction and restores fertility in a PCOS mouse model through interleukin-10[J]. Stem Cell Res Ther, 2021, 12(1):388. doi: 10.1186/s13287-021-02472-w.
|
19 |
Chugh RM, Park HS, Esfandyari S, et al. Mesenchymal stem cell-conditioned media regulate steroidogenesis and inhibit androgen secretion in a PCOS cell model via BMP-2[J]. Int J Mol Sci, 2021, 22(17):9184. doi: 10.3390/ijms22179184.
|
20 |
Kalhori Z, Azadbakht M, Soleimani Mehranjani M, et al. Improvement of the folliculogenesis by transplantation of bone marrow mesenchymal stromal cells in mice with induced polycystic ovary syndrome[J]. Cytotherapy, 2018, 20(12):1445-1458.
|
21 |
郑雅静,代芳芳,杨冬咏,等. 棕色脂肪组织在多囊卵巢综合征中的研究进展[J]. 中国计划生育和妇产科, 2021, 13(12):9-11.
|
22 |
李子涵,李修阳,张宁,等. 棕色脂肪组织及其与多囊卵巢综合征相关性研究新进展[J]. 国际妇产科学杂志, 2018, 45(2):188-191.
|
23 |
Sanchez-Garrido MA, Tena-Sempere M. Metabolic dysfunction in polycystic ovary syndrome: pathogenic role of androgen excess and potential therapeutic strategies[J]. Mol Metab, 2020, 35:100937. doi: 10.1016/j.molmet.2020.01.001.
|
24 |
相迪,张真真,万贵平.白色脂肪组织褐变及其在多囊卵巢综合征治疗中的研究进展[J]. 航空航天医学杂志, 2020, 31(6):723-726.
|
25 |
Zhang Q, Ye R, Zhang YY, et al. Brown adipose tissue and novel management strategies for polycystic ovary syndrome therapy[J]. Front Endocrinol (Lausanne), 2022, 13:847249. doi: 10.3389/fendo.2022.847249.
|
26 |
Zhao Y, Pan S, Wu X. Human umbilical cord mesenchymal stem cell-derived exosomes inhibit ovarian granulosa cells inflammatory response through inhibition of NF-kappaB signaling in polycystic ovary syndrome[J]. J Reprod Immunol, 2022, 152:103638. doi: 10.1016/j.jri.2022.103638.
|
27 |
李玮. 人经血间充质干细胞对多囊卵巢综合征大鼠卵巢CYP19A1的影响[D]. 青岛:青岛大学, 2020.
|
28 |
刘荣华,何文容. MenSCs移植对大鼠多囊卵巢综合征的影响及其机制[J]. 天津医药, 2019, 47(7):709-712.
|
29 |
Cao M, Zhao Y, Chen T, et al. Adipose mesenchymal stem cell-derived exosomal microRNAs ameliorate polycystic ovary syndrome by protecting against metabolic disturbances[J]. Biomaterials, 2022, 288:121739. doi: 10.1016/j.biomaterials.2022.121739.
|
30 |
Park H, Ashour D, Elsharoud A, et al. Towards stem cell therapy of polycystic ovary syndrome (PCOS): therapeutic effect of human mesenchymal stem cells transplantation in pcos mouse model by regulating ovarian vascularization[J]. Cytotherapy, 2019, 21(5):259.
|
31 |
Xie Q, Xiong X, Xiao N, et al. Mesenchymal stem cells alleviate DHEA-induced polycystic ovary syndrome (PCOS) by inhibiting inflammation in mice[J]. Stem Cells Int, 2019, 2019:9782373. doi: 10.1155/2019/9782373.
|
32 |
吴晨婷,伯乐,伊娜,等. 脐带间充质干细胞介导AKT/NF-κB信号通路改善PCOS小鼠卵巢损伤的作用机制研究[J]. 解剖科学进展, 2021, 27(5):619-623.
|
33 |
Wang J, Guan E, Roderiquez G, et al. Role of tyrosine phosphorylation in ligand-independent sequestration of CXCR4 in human primary monocytes-macrophages[J]. J Biol Chem, 2001, 276(52):49236-49243.
|
34 |
De Becker A, Riet IV. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy?[J]. World J Stem Cells, 2016, 8(3):73-87.
|
35 |
Ullah M, Liu DD, Thakor AS. Mesenchymal stromal cell homing: mechanisms and strategies for improvement[J]. iScience, 2019, 15:421-438.
|
36 |
Benor A, Gay S, DeCherney A. An update on stem cell therapy for Asherman syndrome[J]. J Assist Reprod Genet, 2020, 37(7):1511-1529.
|
37 |
Baglio SR, Pegtel DM, Baldini N. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy[J]. Front Physiol, 2012, 3:359. doi: 10.3389/fphys.2012.00359.
|
38 |
Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details[J]. Cell Stem Cell, 2009, 4(3):206-216.
|
39 |
曾辉锋,王玉霞,杨莹. 脂肪干细胞经两种方法移植后在多囊卵巢综合征大鼠体内分布的比较[J]. 暨南大学学报(自然科学与医学版), 2017, 38(5):427-432.
|
40 |
Ling L, Hou J, Liu D, et al. Important role of the SDF-1/CXCR4 axis in the homing of systemically transplanted human amnion-derived mesenchymal stem cells (hAD-MSCs) to ovaries in rats with chemotherapy-induced premature ovarian insufficiency (POI)[J]. Stem Cell Res Ther, 2022, 13(1):79. doi: 10.1186/s13287-022-02759-6.
|
41 |
Jafarzadeh H, Nazarian H, Ghaffari Novin M, et al. Improvement of oocyte in vitro maturation from mice with polycystic ovary syndrome by human mesenchymal stromal cell-conditioned media[J]. J Cell Biochem, 2018, 119(12):10365-10375.
|
42 |
Zhao Y, Tao M, Wei M, et al. Mesenchymal stem cells derived exosomal miR-323-3p promotes proliferation and inhibits apoptosis of cumulus cells in polycystic ovary syndrome (PCOS)[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1):3804-3813.
|
43 |
Zhang Y, Zhang YS, Xue FX. Characterization of embryonic stem cell model of polycystic ovary syndrome[J]. In Vitro Cell Dev Biol Anim, 2016, 52(5):507-511.
|
44 |
Wang F, Liu WW, Chen XM, et al. Differential genes in adipocytes induced from polycystic and non-polycystic ovary syndrome-derived human embryonic stem cells[J]. Syst Biol Reprod Med, 2014, 60(3):136-142.
|
45 |
Li J, Wang F, Kong HJ, et al. Differentiation of polycystic ovary syndrome-derived human embryonic stem cells into adipocytes and their glucose consumption[J]. Gynecol Endocrinol, 2012, 28(11):871-873.
|
46 |
Yang S, Ding S, Jiang X, et al. Establishment and adipocyte differentiation of polycystic ovary syndrome-derived induced pluripotent stem cells[J]. Cell Prolif, 2016, 49(3):352-361.
|
47 |
Min Z, Zhao Y, Hang J, et al. Neuroendocrine characteristics of induced pluripotent stem cells from polycystic ovary syndrome women[J]. Protein Cell, 2019, 10(7):526-532.
|
48 |
Min Z, Zhao Y, Hang J, et al. Correction to: neuroendocrine characteristics of induced pluripotent stem cells from polycystic ovary syndrome women[J]. Protein Cell, 2020, 11(3):227-229.
|
49 |
Huang CC, Chen MJ, Lan CW, et al. Hyperactive CREB signaling pathway involved in the pathogenesis of polycystic ovarian syndrome revealed by patient-specific induced pluripotent stem cell modeling[J]. Fertil Steril, 2019, 112(3):594-607.e12.
|
50 |
Jiang X, Hu R, Li C, et al. Generation of an induced pluripotent stem cell line AMUFAHi002-A from polycystic ovary syndrome patient[J]. Stem Cell Res, 2022, 63:102875. doi: 10.1016/j.scr.2022.102875.
|
51 |
Prodia Stem Cell Indonesia PT. Stem cells and secretomes for infertility therapy in polycystic ovary syndrome (PCOS) patients with insulin resistance. ClinicalTrials [OL].
URL
|
52 |
Li Z, Zhang M, Zheng J, et al. Human umbilical cord mesenchymal stem cell-derived exosomes improve ovarian function and proliferation of premature ovarian insufficiency by regulating the hippo signaling pathway[J]. Front Endocrinol (Lausanne), 2021, 12:711902. doi: 10.3389/fendo.2021.711902.
|
53 |
Cui L, Bao H, Liu Z, et al. hUMSCs regulate the differentiation of ovarian stromal cells via TGF-beta(1)/Smad3 signaling pathway to inhibit ovarian fibrosis to repair ovarian function in POI rats[J]. Stem Cell Res Ther, 2020, 11(1):386. doi: 10.1186/s13287-020-01904-3.
|