1 |
Follin B, Juhl M, Cohen S, et al. Increased paracrine immunomodulatory potential of mesenchymal stromal cells in three-dimensional culture[J]. Tissue Eng Part B Rev, 2016, 22(4):322-329.
|
2 |
Kouroupis D, Correa D. Increased mesenchymal stem cell functionalization in three-dimensional manufacturing settings for enhanced therapeutic zpplications[J]. Front Bioeng Biotechnol, 2021, 9:621748.
|
3 |
Jauković A, Abadjieva D, Trivanović D, et al. Specificity of 3D MSC spheroids microenvironment: impact on MSC behavior and properties[J]. Stem Cell Rev Rep, 2020, 16(5):853-875.
|
4 |
鲍颖颖,陈小湧.间充质干细胞防治慢性移植物抗宿主病:进展与挑战[J].器官移植, 2023, 14(3):327-335.
|
5 |
李芳,李栋,刘欢,等.三维培养对脐带间充质干细胞表型及造血因子基因表达的影响[J].中国实验血液学杂志, 2014, 22(5):1408-1414.
|
6 |
Sayin E, Baran ET, Elsheikh A, et al. Evaluating oxygen tensions related to bone marrow and matrix for MSC differentiation in 2D and 3D biomimetic lamellar scaffolds[J]. Int Mol Sci, 2021, 22(8):4010.
|
7 |
Kusuma GD, Li A, Zhu D, et al. Effect of 2D and 3D culture microenvironments on mesenchymal stem cell-derived extracellular vesicles potencies[J]. Front Cell Dev Biol, 2022, 10:819726.
|
8 |
Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells[J]. Cell Transplant, 2011, 20(1):5-14.
|
9 |
Levy O, Kuai R, Siren EMJ, et al. Shattering barriers toward clinically meaningful MSC therapies[J]. Sci Advs, 2020, 22:6(30):eaba6884.
|
10 |
Al-Shaibani MBH. Three-dimensional cell culture(3DCC)improves secretion of signaling molecules of mesenchymal stem cells(MSCs)[J]. Biotechnol Lett, 2022, 44(1):143-155.
|
11 |
Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases[J]. Signal Transduct Target Ther, 2022, 7(1):272.
|
12 |
Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture[J]. Nature methods, 2016,13(5):405-414.
|
13 |
Yap JX, Leo CP, Mohd Yasin NH, et al. Recent advances of natural biopolymeric culture scaffold: synthesis and modification[J]. Bioengineered, 2022, 13(2):2226-2247.
|
14 |
Zhai P, Peng X, Li B, et al. The application of hyaluronic acid in bone regeneration[J]. Int Biol Macromol, 2020, 151:1224-1239.
|
15 |
Hunt NC, Hallam D, Karimi A, et al. 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development[J]. Acta Biomater, 2017, 49:329-343.
|
16 |
Wasyłeczko M, Sikorska W, Chwojnowski A. Review of synthetic and hybrid scaffolds in cartilage tissue engineering[J]. Membranes (Basel), 2020,10(11):348.
|
17 |
Rodina AV, Tenchurin TK, Saprykin VP, et al. Proliferative and differentiation potential of multipotent mesenchymal stem cells cultured on biocompatible polymer scaffolds with various physicochemical characteristics[J]. Bull Exp Biol Med, 2017, 162(4):488-495.
|
18 |
Sun W, Gregory DA, Tomeh MA, et al. Silk fibroin as a functional biomaterial for tissue engineering[J]. Int Mol Sci, 2021, 22(3):1499.
|
19 |
Lemoine M, Casey SM, OByrne JM, et al. The development of natural polymer scaffold-based therapeutics for osteochondral repair[J]. Biochem Soc Trans, 2020, 48(4):1433-1445.
|
20 |
Ullah F, Javed F, Zakaria MR, et al. Determining the molecular-weight and interfacial properties of chitosan built nanohydrogel for controlled drug delivery applications[J]. Biointerface Res Appl Chem, 2019, 4452-4457.
|
21 |
Kampleitner C, Changi K, Felfel RM, et al. Preclinical biological and physicochemical evaluation of two-photon engineered 3D biomimetic copolymer scaffolds for bone healing[J]. Biomater Sci, 2020, 8(6):1683-1694.
|
22 |
梁婷婷,张世昌.间充质干细胞球形体培养的研究进展[J/OL].中华细胞与干细胞杂志(电子版), 2021,11(6):372-377.
|
23 |
Costa EC, de Melo-Diogo D, Moreira AF, et al. Spheroids formation on non-adhesive surfaces by liquid overlay technique: considerations and practical approaches[J]. Biotechnol J, 2018 , 13(1). doi: 10.1002/biot.201700417.
|
24 |
张斌斌,高全文,李冰,等.骨髓间充质干细胞在Matrigel凝胶支架上的生长与变化[J].中国组织工程研究, 2018, 22(13):1993-1998.
|
25 |
Chen Q, Wang Y. The application of three-dimensional cell culture in clinical medicine[J]. Biotechnol Lett, 2020,42(11):2071-2082.
|
26 |
Alghuwainem A, Alshareeda AT, Alsowayan B. Scaffold-free 3-D cell sheet technique bridges the Gap between 2-D cell culture and animal models[J]. Int J Mol Sci, 2019 , 20(19):4926.
|
27 |
Ezquerra S, Zuleta A, Arancibia R, et al.Functional properties of human-derived mesenchymal stem cell spheroids: a meta-analysis and systematic review[J]. Stem Cells Int, 2021:8825332.
|
28 |
Falcones B, Sanz-Fraile H, Marhuenda E, et al. Bioprintable Lung extracellular matrix hydrogel scaffolds for 3D culture of mesenchymal stromal cells[J]. Polymers (Basel), 2021, 13(14):2350.
|
29 |
Lamparelli EP, Lovecchio J, Ciardulli MC, et al. Chondrogenic commitment of human bone marrow mesenchymal stem cells in a perfused collagen hydrogel functionalized with hTGF-β1-releasing PLGA microcarrier[J]. Pharmaceutics, 2021, 13(3):399.
|
30 |
Chen CY, Li C, Ke CJ, et al. Kartogenin enhances chondrogenic differentiation of MSCs in 3D Tri-copolymer scaffolds and the self-designed bioreactor system[J]. Biomolecules, 2021,11(1):115.
|
31 |
Cao J, Wang B, Tang T, et al. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury[J]. Stem Cell Res Ther, 2020, 11(1):206.
|
32 |
Rybkowska P, Radoszkiewicz K, Kawalec M, et al. The metabolic changes between monolayer (2D) and three-dimensional (3D) culture conditions in human mesenchymal stem/stromal cells derived from adipose tissue[J]. Cells, 2023,12(1):178.
|
33 |
Wuchter P, Diehlmann A, Klüter H. Closer to Nature: The role of MSCs in recreating the microenvironment of the hematopoietic stem cell Niche in vitro[J]. Transfus Med Hemother,2022,49(4):258-267.
|
34 |
Theodoridis K, Aggelidou E, Manthou ME, et al. Hypoxia promotes cartilage regeneration in cell-seeded 3D-printed bioscaffolds cultured with a bespoke 3D culture device[J]. Int J MolSci, 2023,24(7):6040.
|
35 |
Silva-Carvalho Aé, da Silva IGM, Corrêa JR, et al. Regulatory T-cell enhancement, expression of adhesion molecules, and production of anti-inflammatory factors are differentially modulated by spheroid-cultured mesenchymal stem cells[J]. Int J MolSci, 2022,23(22):14349.
|
36 |
Li Q, Lei X, Wang X, et al. Hydroxyapatite/collagen three-dimensional printed scaffolds and their osteogenic effects on human bone marrow-derived mesenchymal stem cells[J]. Tissue Eng Part A, 2019, 25(17-18):1261-1271.
|
37 |
Fernández-Francos S, Eiro N, González-Galiano N, et al . Mesenchymal stem cell-based therapy as an alternative to the treatment of acute respiratory distress syndrome: current evidence and future perspectives[J]. Int Mol Sci, 2021, 22(15):7850.
|
38 |
Huldani H, Margiana R, Ahmad F, et al. Immunotherapy of inflammatory bowel disease (IBD) through mesenchymal stem cells[J]. Int Immunopharmacol, 2022, 107:108698.doi: 10.1016/j.intimp.2022.108698.
|
39 |
Wang Y, Huang B, Jin T, et al. Intestinal fibrosis in inflammatory bowel disease and the prospects of mesenchymal stem cell therapy[J]. Front Immunol, 2022,13:835005.
|
40 |
Regmi S, Seo Y, Ahn JS, et al. Heterospheroid formation improves therapeutic efficacy of mesenchymal stem cells in murine colitis through immunomodulation and epithelial regeneration[J]. Biomaterials, 2021, 271:120752.
|
41 |
Gonzalez Pujana A, Beloqui A, Javier Aguirre J, et al. Mesenchymal stromal cells encapsulated in licensing hydrogels exert delocalized systemic protection against ulcerative colitis via subcutaneous xenotransplantation[J]. Eur Pharm Biopharm, 2022, 172:31-40.
|
42 |
Saadh MJ, Mikhailova MV, Rasoolzadegan S, et al. Therapeutic potential of mesenchymal stem/stromal cells (MSCs)-based cell therapy for inflammatory bowel diseases (IBD) therapy[J]. Eur J Med Res, 2023, 28(1):47.
|
43 |
Guo S, Perets N, Betzer O, et al. Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs complete spinal cord injury[J]. ACS Nano, 2019, 13:10015-10028.
|
44 |
Saremi J, Mahmoodi N, Rasouli M, et al. Advanced approaches to regenerate spinal cord injury: the development of cell and tissue engineering therapy and combinational treatments [J]. Biomed Pharmacother, 2022,146:112529.
|
45 |
Liu T, Zhu W, Zhang X, et al. Recent advances in cell and functional biomaterial treatment for spinal cord injury[J]. Biomed Res Int, 2022, 2022:5079153.doi: 10.1155/2022/5079153.
|
46 |
Lv B, Zhang X, Yuan J, et al. Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury[J]. Stem Cell Res Ther, 2021, 12(1):36.
|
47 |
Deng J, Li M, Meng F, et al. 3D spheroids of human placenta-derived mesenchymal stem cells attenuate spinal cord injury in mice[J]. Cell Dea-th Dis,2021,12(12):1096.
|
48 |
Liu L, Wan J, Dai M, et al. Effects of oxygen generating scaffolds on cell survival and functional recovery following acute spinal cord injury in rats[J]. J Mater Sci Mater Med, 2020, 31(12):115.
|
49 |
Zhu L, Wang S, Qu J, et al. The therapeutic potential of mesenchymal stem cells in the treatment of diabetes mellitus[J]. Cell Reprogram, 2022, 24(6):329-342.
|
50 |
Gao S, Zhang Y, Liang K, et al. Mesenchymal stem cells (MSCs): a novel therapy for type 2 diabetes[J]. Stem Cells Int, 2022, 2022:8637493.doi: 10.1155/2022/8637493.
|
51 |
Ogurtsova K, Guariguata L, Barengo NC, et al. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021[J]. Diabetes Res Clin Pract, 2022, 183:109118.
|
52 |
Barati G, Nadri S, Hajian R, etal. Differentiation of microfluidic-encapsulated trabecular meshwork mesenchymal stem cells into insulin producing cells and their impact on diabetic rats[J]. Cell Physiol, 2019, 234(5):6801-6809.
|
53 |
Zhang Y, Gao S, Liang K, et al. Exendin-4 gene modification and microscaffold encapsulation promote self-persistence and antidiabetic activity of MSCs[J]. Sci Adv, 2021, 7(27):eabi4379.
|
54 |
Tang J, Cui X, Zhang Z, et al. Injection-free delivery of MSC-derived extracellular vesicles for myocardial infarction therapeutics[J]. Adv Healthc Mater, 2022, 11(5):e2100312.
|
55 |
Yamada Y, Minatoguchi S, Kanamori H, et al. Stem cell therapy for acute myocardial infarction focusing on the comparison between Muse cells and mesenchymal stem cells[J]. J Cardiol, 2022, 80(1):80-87.
|
56 |
Csöbönyeiová M, Beerová N, Klein M, et al. Cell-based and selected cell-free therapies for myocardial infarction: how do they compare to the current treatment options?[J]. Int J Mol Sci, 2022,23(18):10314.
|
57 |
Meng H, Cheng W, Wang L, et al. Mesenchymal stem cell exosomes in the treatment of myocardial infarction: a systematic review of preclinical in vivo studies[J]. Cardiovasc Transl Res, 2022,15(2):317-339.
|
58 |
Gao L, Yi M , Xing M , et al. In situ activated mesenchymal stem cell (MSCs) by bioactive hydrogel for myocardial infarction treatment[J]. J Mater Chem B, 2020, 8(34):7713-7722.
|
59 |
Qazi REM, Khan I, Haneef K, et al . Combination of mesenchymal stem cells and three-dimensional collagen scaffold preserves ventricular remodeling in rat myocardial infarction model[J]. World J Stem Cells, 2022, 14(8):633-657.
|