1 |
Hamblin MH, Murad R, Yin J, et al. Modulation of gene expression on a transcriptome-wide level following human neural stem cell transplantation in aged mouse stroke brains[J]. Exp Neurol, 2022, 347:113913. doi: 10.1016/j.expneurol.2021.113913.
|
2 |
Zhao LN, Ma SW, Xiao J, et al. Bone marrow mesenchymal stem cell therapy regulates gut microbiota to improve post-stroke neurological function recovery in rats[J]. World J Stem Cells, 2021, 13(12):1905-1917.
|
3 |
Kawabori M, Shichinohe H, Kuroda S, et al. Clinical trials of stem cell therapy for cerebral ischemic stroke[J]. Int J Mol Sci, 2020, 21(19):7380. doi: 10.3390/ijms21197380.
|
4 |
Levy ML, Crawford JR, Dib N, et al. Phase I/II study of safety and preliminary efficacy of intravenous allogeneic mesenchymal stem cells in chronic stroke[J]. Stroke, 2019, 50(10):2835-2841.
|
5 |
Yakoub AM, Sadek M. Development and characterization of human cerebral organoids[J]. Cell Transplant, 2018, 27(3):393-406.
|
6 |
Xu R, Boreland AJ, Li X, et al. Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology[J]. Stem Cell Reports, 2021, 16(8):1923-1937.
|
7 |
Nascimento JM, Saia-Cereda VM, Sartore RC, et al. Human cerebral organoids and fetal brain tissue share proteomic similarities[J]. Front Cell Dev Biol, 2019, 7:303. doi: 10.3389/fcell.2019.00303.
|
8 |
Kim H, XU R, Padmashri R, et al. Pluripotent stem cell-derived cerebral organoids reveal human oligodendrogenesis with dorsal and ventral origins[J]. Stem Cell Reports, 2019, 12(5):890-905.
|
9 |
Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells[J]. Nat Protoc, 2014, 9(10):2329-2340.
|
10 |
Eiraku M, Watanabe K, Matsuo TM, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals[J]. Cell Stem Cell, 2008, 3(5):519-532.
|
11 |
Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467):373-379.
|
12 |
Qian X, Nguyen HN, Song MM, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure[J]. Cell, 2016, 165(5):1238-1254.
|
13 |
Qian X, Jacob F, Song MM, et al. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor[J]. Nat Protoc, 2018, 13(3):565-580.
|
14 |
Paşca AM, Sloan SA, Clarke LE, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture[J]. Nat Methods, 2015, 12(7):671-678.
|
15 |
Giandomenico SL, Sutcliffe M, Lancaster MA. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development[J]. Nat Protoc, 2021, 16(2):579-602.
|
16 |
Chiaradia I, Lancaster MA. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo[J]. Nat Neurosci, 2020, 23(12):1496-1508.
|
17 |
Jo J, Xiao Y, Sun AX, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons[J]. Cell Stem Cell, 2016, 19(2):248-257.
|
18 |
Eura N, Matsui TK, Luginbühl J, et al. Brainstem organoids from human pluripotent stem cells[J]. Front Neurosci, 2020, 14:538. doi: 10.3389/fnins.2020.00538.
|
19 |
Muguruma K, Nishiyama A, Kawakami H, et al. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells[J]. Cell Rep, 2015, 10(4):537-550.
|
20 |
Pellegrini L, Bonfio C, Chadwick J, et al. Human CNS barrier-forming organoids with cerebrospinal fluid production[J]. Science, 2020, 369(6500):eaaz5626. doi: 10.1126/science.aaz5626.
|
21 |
Sakaguchi H, Kadoshima T, Soen M, et al. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue[J]. Nat Commun, 2015, 6:8896.doi: 10.1038/ncomms9896.
|
22 |
Huang WK, Wong S ZH, Pather SR, et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells[J]. Cell Stem Cell, 2021, 28(9):1657-1670.e10.
|
23 |
Ozone C, Suga H, Eiraku M, et al. Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells[J]. Nat Commun, 2016, 7:10351. doi: 10.1038/ncomms10351.
|
24 |
Sloan SA, Andersen J, Pasca AM, et al. Generation and assembly of human brain region-specific three-dimensional cultures[J]. Nat Protoc, 2018, 13(9):2062-2085.
|
25 |
Bagley JA, Reumann D, Bian S, et al. Fused cerebral organoids model interactions between brain regions[J]. Nat Methods, 2017, 14(7):743-751.
|
26 |
Birey F, Andersen J, Makinson C-D, et al. Assembly of functionally integrated human forebrain spheroids[J]. Nature, 2017, 545(7652):54-59.
|
27 |
Xiang Y, Tanaka Y, Patterson B, et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration[J]. Cell Stem Cell, 2017, 21(3):383-398.e7.
|
28 |
Xiang Y, Tanaka Y, Cakir B, et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids[J]. Cell Stem Cell, 2019, 24(3):487-497.e7.
|
29 |
Ao Z, Cai H, Wu Z, et al. Controllable fusion of human brain organoids using acoustofluidics[J]. Lab Chip, 2021, 21(4):688-699.
|
30 |
Fligor CM, Lavekar SS, Harkin J, et al. Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids[J]. Stem Cell Reports, 2021, 16(9):2228-2241.
|
31 |
Cakir B, Xiang Y, Tanaka Y, et al. Engineering of human brain organoids with a functional vascular-like system[J]. Nat Methods, 2019, 16(11):1169-1175.
|
32 |
Ahn Y, An JH, Yang HJ, et al. Human blood vessel organoids penetrate human cerebral organoids and form a vessel-like system[J]. Cells, 2021, 10(8):2036. doi: 10.3390/cells10082036.
|
33 |
Shi Y, Sun L, Wang M, et al. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo[J]. PLoS Biol, 2020, 18(5):e3000705.
|
34 |
Worsdorfer P, Dalda N, Kern A, et al. Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells[J]. Sci Rep, 2019, 9(1):15663.doi: 10.1038/s41598-019-52204-7.
|
35 |
Ham O, Jin YB, Kim J, et al. Blood vessel formation in cerebral organoids formed from human embryonic stem cells[J]. Biochem Biophys Res Commun, 2020, 521(1):84-90.
|
36 |
Dailamy A, Parekh U, Katrekar D, et al. Programmatic introduction of parenchymal cell types into blood vessel organoids[J]. Stem Cell Reports, 2021, 16(10):2432-2441.
|
37 |
Ormel PR, Vieira de Sá R, van Bodegraven EJ, et al. Microglia innately develop within cerebral organoids[J]. Nat Commun, 2018, 9(1):4167.doi: 10.1038/s41467-018-06684-2.
|
38 |
Fagerlund I, Dougalis A, Shakirzyanova A, et al. Microglia-like cells promote neuronal functions in cerebral organoids[J]. Cells, 2021, 11(1):124. doi: 10.3390/cells11010124.
|
39 |
Marton RM, Miura Y, Sloan SA, et al. Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures[J]. Nat Neurosci, 2019, 22(3):484-491.
|
40 |
Kozlowski M-T, Crook C-J, Ku H-T. Towards organoid culture without Matrigel[J]. Commun Biol, 2021, 4(1):1387.doi: 10.1038/s42003-021-02910-8.
|
41 |
Gu Q, Tomaskovic CE, Lozano R, et al. Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells[J]. Adv Healthc Mater, 2016, 5(12):1429-1438.
|
42 |
Cederquist G-Y, Asciolla JJ, Tchieu J, et al. Specification of positional identity in forebrain organoids[J]. Nat Biotechnol, 2019, 37(4):436-444.
|
43 |
Gabriel E, Albanna W, Pasquini G, et al. Human brain organoids assemble functionally integrated bilateral optic vesicles[J]. Cell Stem Cell, 2021, 28(10):1740-1757 e8.
|
44 |
Tourovskaia A, Fauver M, Kramer G, et al. Tissue-engineered microenvironment systems for modeling human vasculature[J]. Exp Biol Med (Maywood), 2014, 239(9):1264-1271.
|
45 |
Cho AN, Jin Y, An Y, et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids[J]. Nat Commun, 2021, 12(1):4730.doi: 10.1038/s41467-021-24775-5.
|
46 |
Ronaldson BK, Teles D, Yeager K, et al. A multi-organ chip with matured tissue niches linked by vascular flow[J]. Nat Biomed Eng, 2022, 6(4):351-371.
|
47 |
Cassel de Camps C, Aslani S, Stylianesis N, et al. Hydrogel mechanics influence the growth and development of embedded brain organoids[J]. ACS Appl Bio Mater, 2022, 5(1):214-224.
|
48 |
Chooi WH, Ng CY, Ow V, et al. Defined alginate hydrogels support spinal cord organoid derivation, maturation, and modeling of spinal cord diseases[J]. Adv Healthc Mater, 2022:e2202342.doi: 10.1002/adhm.202202342.
|
49 |
Simsa R, Rothenbücher T, Gürbüz H, et al. Brain organoid formation on decellularized porcine brain ECM hydrogels[J]. PLoS One, 2021, 16(1):e0245685.doi: 10.1371/journal.pone.0245685.
|
50 |
Cruz EM, Machado LS, Zamproni LN, et al. A gelatin methacrylate-based hydrogel as a potential bioink for 3D bioprinting and neuronal differentiation[J]. Pharmaceutics, 2023, 15(2):627. doi: 10.3390/pharmaceutics15020627.
|
51 |
Tejchman A, Znój A, Chlebanowska P, et al. Carbon fibers as a new type of scaffold for midbrain organoid development[J]. Int J Mol Sci, 2020, 21(17):5959. doi: 10.3390/ijms21175959.
|
52 |
Sozzi E, Kajtez J, Bruzelius A, et al. Silk scaffolding drives self-assembly of functional and mature human brain organoids[J]. Front Cell Dev Biol, 2022, 10:1023279.doi: 10.3389/fcell.2022.1023279.
|
53 |
Ao Z, Cai H, Havert DJ, et al. One-stop microfluidic assembly of human brain organoids to model prenatal cannabis exposure[J]. Anal Chem, 2020, 92(6):4630-4638.
|
54 |
Berger E, Magliaro C, Paczia N, et al. Millifluidic culture improves human midbrain organoid vitality and differentiation[J]. Lab Chip, 2018, 18(20):3172-3183.
|
55 |
Ao Z, Cai H, Wu Z, et al. Tubular human brain organoids to model microglia-mediated neuroinflammation[J]. Lab Chip, 2021, 21(14):2751-2762.
|
56 |
Salmon I, Grebenyuk S, Abdel Fattah AR, et al. Engineering neurovascular organoids with 3D printed microfluidic chips[J]. Lab Chip, 2022, 22(8):1615-1629.
|
57 |
Shin N, Kim Y, Ko J, et al. Vascularization of iNSC spheroid in a 3D spheroid-on-a-chip platform enhances neural maturation[J]. Biotechnol Bioeng, 2022, 119(2):566-574.
|
58 |
王小文,郑哲,黄洁.脑卒中供者心脏的心肌损伤机制与临床研究进展[J].器官移植, 2023, 14(01):42-48.
|
59 |
Zhou L, Zhu H, Bai X, et al. Potential mechanisms and therapeutic targets of mesenchymal stem cell transplantation for ischemic stroke[J]. Stem Cell Res Ther, 2022, 13(1):195.doi: 10.1186/s13287-022-02876-2.
|
60 |
Caplan AI. MSCs: The sentinel and safe-guards of injury[J]. J Cell Physiol, 2016, 231(7):1413-1416.
|
61 |
Daviaud N, Friedel RH, Zou H. Vascularization and engraftment of transplanted human cerebral organoids in mouse cortex[J]. eNeuro, 2018, 5(6):ENEURO.0219-18.
|
62 |
Wang SN, Wang Z, Xu TY, et al. Cerebral organoids repair ischemic stroke brain injury[J]. Transl Stroke Res, 2020, 11(5):983-1000.
|
63 |
Wang Z, Wang SN, Xu TY, et al. Cerebral organoids transplantation improves neurological motor function in rat brain injury[J]. CNS Neurosci Ther, 2020, 26(7):682-697.
|
64 |
Kitahara T, Sakaguchi H, Morizane A, et al. Axonal extensions along corticospinal tracts from transplanted human cerebral organoids[J]. Stem Cell Reports, 2020, 15(2):467-481.
|
65 |
Bao Z, Fang K, Miao Z, et al. Human cerebral organoid implantation alleviated the neurological deficits of traumatic brain injury in mice[J]. Oxid Med Cell Longev, 2021, 2021:6338722.doi: 10.1155/2021/6338722.
|
66 |
Mansour AA, Gonçalves JT, Bloyd CW, et al. An in vivo model of functional and vascularized human brain organoids[J]. Nat Biotechnol, 2018, 36(5):432-441.
|
67 |
Dong X, Xu SB, Chen X, et al. Human cerebral organoids establish subcortical projections in the mouse brain after transplantation[J]. Mol Psychiatry, 2021, 26(7):2964-2976.
|
68 |
Revah O, Gore F, Kelley KW, et al. Maturation and circuit integration of transplanted human cortical organoids[J]. Nature, 2022, 610(7931): 319-326.
|
69 |
Tsuchida T, Murata S, Hasegawa S, et al. Investigation of clinical safety of human iPS cell-derived liver organoid transplantation to infantile patients in porcine model[J]. Cell Transplant, 2020, 29:963689720964384.doi: 10.1177/0963689720964384.
|
70 |
Iwasa N, Matsui T-K, Iguchi N, et al. Gene expression profiles of human cerebral organoids identify PPAR pathway and PKM2 as key markers for oxygen-glucose deprivation and reoxygenation[J]. Front Cell Neurosci, 2021, 15:605030. doi: 10.3389/fncel.2021.605030.
|
71 |
Kim MS, Kim DH, Kang HK, et al. Modeling of hypoxic brain injury through 3D human neural organoids[J]. Cells, 2021, 10(2):234. doi: 10.3390/cells10020234.
|
72 |
Daviaud N, Chevalier C, Friedel RH, et al. Distinct vulnerability and resilience of human neuroprogenitor subtypes in cerebral organoid model of prenatal hypoxic injury[J]. Front Cell Neurosci, 2019, 13:336.doi: 10.3389/fncel.2019.00336.
|
73 |
Pașca AM, Park JY, Shin HW, et al. Human 3D cellular model of hypoxic brain injury of prematurity[J]. Nat Med, 2019, 25(5):784-791.
|
74 |
Nzou G, Wicks RT, VanOstrand NR, et al. Multicellular 3D neurovascular unit model for assessing hypoxia and neuroinflammation induced blood-brain barrier dysfunction[J]. Sci Rep, 2020, 10(1):9766.doi: 10.1038/s41598-020-66487-8.
|