切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (04) : 229 -237. doi: 10.3877/cma.j.issn.2095-1221.2025.04.006

综述

间充质干细胞在再生医学中的基础研究与临床应用进展
李晓, 张娇娇, 董友玉, 张在鹏, 蔡萌萌, 徐峰波()   
  1. 261072 潍坊,山东阳光融和医院有限责任公司生命科学实验室
  • 收稿日期:2024-09-11 出版日期:2025-08-01
  • 通信作者: 徐峰波

Progress in basic research and clinical application of mesenchymal stem cells in regenerative medicine

Xiao Li, Jiaojiao Zhang, Youyu Dong, Zaipeng Zhang, Mengmeng Cai, Fengbo Xu()   

  1. Shandong Sunshine Union Hospital Co., LTD, Weifang 261072, China
  • Received:2024-09-11 Published:2025-08-01
  • Corresponding author: Fengbo Xu
引用本文:

李晓, 张娇娇, 董友玉, 张在鹏, 蔡萌萌, 徐峰波. 间充质干细胞在再生医学中的基础研究与临床应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 229-237.

Xiao Li, Jiaojiao Zhang, Youyu Dong, Zaipeng Zhang, Mengmeng Cai, Fengbo Xu. Progress in basic research and clinical application of mesenchymal stem cells in regenerative medicine[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(04): 229-237.

再生医学旨在修复受损的组织或器官,常用于各种难治愈疾病的治疗。当前,多模式再生方法包括健康器官、组织或细胞的移植;身体刺激以激活受损组织的自我修复反应;结合使用细胞和生物可降解支架以获得功能性组织。间充质干细胞(MSCs)几乎存在于所有组织中,具有容易获取、自我更新、分化成多种细胞类型和显著的再生医学潜力等特点。本文概述MSCs在再生医学方面的应用,主要包括在骨骼、皮肤、肾脏、肝脏、心脏、卵巢、角膜、气管和神经修复等方面的应用,并介绍使用MSCs的潜在风险及需要考虑的问题,为基础与临床应用研究提供参考。

Regenerative medicine aims to repair damaged tissues or organs, which is commonly employed in treating various refractory diseases. Current multimodal regenerative approaches include transplantation of healthy organs, tissues, or cells, stimulation of the body to activate the self-repair response in damaged tissues, and combined application of cells with biodegradable scaffolds to achieve functional tissues. Mesenchymal stem cells (MSCs), presenting in nearly all tissues, exhibiting characteristics such as easy accessibility, self-renewal capacity, multidirectional differentiation potential, and significant regenerative medicine applications. This article summarizes the applications of MSCs in regenerative medicine—primarily encompassing bone, skin, kidney, liver, heart, ovary, cornea, tracheal, and neural tissue repair—and addressing potential risks and considerations associated with their use, providing references for fundamental and clinical application research.

表1 MSCs研究方向与应用总结
研究方向 采用细胞类型 研究内容/应用 文献
前交叉韧带 AD-MSCs AD-MSCs来源的外泌体过调节愈合期间的炎症过程,改善兔子前交叉韧带初次修复后的韧带-骨整合效果 [25]
糖尿病 绒毛膜板MSCs 绒毛膜板MSCs来源的外泌体包裹水凝胶皮下注射,改善再上皮化、胶原蛋白形成和表皮生长因子的表达,促进糖尿病伤口的愈合 [26]
雄激素性脱发 MSCs 通过刺激MSCs产生具有免疫调节功能的压力蛋白,成功促进雄激素性脱发小鼠的毛发生长并激活毛囊干细胞,诱导毛发再生 [27]
骨骼肌 BM-MSCs BM-MSCs来源的外泌体改善兔肩袖撕裂模型肌萎缩 [28]
肾损伤 UC-MSCs UC-MSCs来源的外泌体显著改善缺血/再灌注后的肾功能,并减轻肾脏纤维化 [29]
心力衰竭 UC-MSCs UC-MSCs提高左心室射血分数,并表现出良好的安全性 [30]
肝硬化 UC-MSCs UC-MSCs改善动物组织中纤维化的病理程度,降低胶原蛋白含量、血清生化指标和纤维化生物标志物 [31]
角膜 自体角膜缘干细胞+滋养层细胞 2015年在欧盟获批上市,治疗角膜烧伤修复 [32]
神经 诱导多能干细胞衍生的MSCs 营养神经,提高神经元存活率,促进神经元生长和突触活动 [33]
气道炎症 BM-MSCs BM-MSCs来源的外泌体雾化后,改善慢性阻塞性肺疾病大鼠的肺功能,减少肺部炎症浸润、支气管黏液分泌和胶原沉积 [34]
卵巢损伤 AD-MSCs 减轻小鼠卵巢纤维化,促进卵泡中细胞增殖,增加卵泡数量和卵巢功能 [35]
图1 MSCs常见组织重建示意图(BioRender绘图软件绘制)
表2 MSCs用于骨骼修复的临床试验
表3 MSCs用于皮肤损伤治疗的临床试验
表4 MSCs用于肾脏疾病治疗的临床试验
表5 MSCs用于肝脏损伤修复的临床试验
表6 MSCs用于心肌损伤修复的临床试验
1
McKinley KL, Longaker MT, Naik S. Emerging frontiers in regenerative medicine[J]. Science, 2023, 380(6647):796-798.
2
Vasanthan J, Gurusamy N, Rajasingh S, et al. Role of human mesenchymal stem cells in regenerative therapy[J]. Cells, 2020, 10(1):54. doi: 10.3390/cells10010054.
3
Yang X, Meng Y, Han Z, et al. Mesenchymal stem cell therapy for liver disease: full of chances and challenges[J]. Cell Biosci, 2020, 10:123. doi: 10.1186/s13578-020-00480-6.
4
Malekpour K, Hazrati A, Zahar M, et al. The potential use of mesenchymal stem cells and their derived exosomes for orthopedic diseases treatment[J]. Stem Cell Rev Rep, 2022, 18(3):933-951.
5
García-Bernal D, García-Arranz M, Yáñez RM, et al. The current status of mesenchymal stromal cells: controversies, unresolved issues and some promising solutions to improve their therapeutic efficacy[J]. Front Cell Dev Biol, 2021, 9:650664. doi: 10.3389/fcell.2021.650664.
6
Caplan H, Olson SD, Kumar A, et al. Mesenchymal stromal cell therapeutic delivery: translational challenges to clinical application[J]. Front Immunol, 2019, 10:1645. doi: 10.3389/fimmu.2019.01645.
7
Ren Z, Qi Y, Sun S, et al. Mesenchymal stem cell-derived exosomes: hope for spinal cord injury repair[J]. Stem Cells Dev, 2020, 29(23):1467-4778.
8
Friedenstein AJ, Chailakhyan RK, Latsinik NV, et al. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo[J]. Transplantation, 1974, 17(4):331-340.
9
Zhou J, Shi Y. Mesenchymal stem/stromal cells (MSCs): origin, immune regulation, and clinical applications[J]. Cell Mol Immunol, 2023, 20(6):555-557.
10
Tsai AC, Jeske R, Chen X, et al. Influence of microenvironment on mesenchymal stem cell therapeutic potency: from planar culture to microcarriers[J]. Front Bioeng Biotechnol, 2020, 8:640. doi: 10.3389/fbioe.2020.00640.
11
Kemp KC, Hows J, Donaldson C. Bone marrow-derived mesenchymal stem cells[J]. Lymphoma, 2005, 46(11):1531-1544.
12
Wang L, Tran I, Seshareddy K, et al. A comparison of human bone marrow–derived mesenchymal stem cells and human umbilical cord–derived mesenchymal stromal cells for cartilage tissue engineering[J]. Tissue Eng Part A, 2009, 15(8):2259-2266.
13
Konno M, Hamabe A, Hasegawa S, et al. Adipose-derived mesenchymal stem cells and regenerative medicine[J]. Dev Growth Differ, 2013, 55(3):309-318.
14
Ouryazdanpanah N, Dabiri S, Derakhshani A, et al. Peripheral blood-derived mesenchymal stem cells: growth factor-free isolation, molecular characterization and differentiation[J]. Iran J Pathol, 2018, 13(4):461-466.
15
Wang Y, Yu X, Chen E, et al. Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases[J]. Stem Cell Res Ther, 2016, 7(1):71. doi: 10.1186/s13287-016-0330-3.
16
De Sousa EB, Casado PL, Neto VM, et al. Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives[J]. Stem Cell Res Ther, 2014, 5(5):112. doi: 10.1186/scrt501.
17
Li Z, Jiang CM, An S, et al. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells[J]. Oral Diseases, 2014, 20(1):25-34.
18
Alanazi A, Munir H, Alassiri M, et al. Comparative adhesive and migratory properties of mesenchymal stem cells from different tissues[J]. Biorheology, 2019, 56(1):15-30.
19
Merimi M, El-Majzoub R, Lagneaux L, et al. The Therapeutic potential of mesenchymal stromal cells for regenerative medicine: current knowledge and future understandings[J]. Front Cell Dev Biol, 2021, 9:661532. doi: 10.3389/fcell.2021.661532.
20
Margiana R, Markov A, Zekiy AO, et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review[J]. Stem Cell Res Ther, 2022,13(1):366. doi:10.1186/s13287-022-03054-0.
21
Costela-Ruiz VJ, Melguizo-Rodríguez L, Bellotti C, et al. Different sources of mesenchymal stem cells for tissue regeneration: a guide to identifying the most favorable one in orthopedics and dentistry applications[J]. Int J Mol Sci, 2022, 23(11):6356. doi: 10.3390/ijms23116356.
22
Han Y, Li X, Zhang Y, et al. Mesenchymal stem cells for regenerative medicine[J]. Cells, 2019, 8(8):886. doi: 10.3390/cells8080886.
23
Fernández-Santos ME, Garcia-Arranz M, Andreu EJ, et al. Optimization of mesenchymal stromal cell (MSC) manufacturing processes for a better therapeutic outcome[J]. Front Immunol, 2022, 13:918565. doi: 10.3389/fimmu.2022.918565.
24
Wu M, Zhang R, Zou Q, et al. Comparison of the biological characteristics of mesenchymal stem cells derived from the human placenta and umbilical cord[J]. Scientific reports, 2018, 8(1):5014. doi: 10.1038/s41598-018-23396-1.
25
Yanuar A, Agustina H, Antarianto RD, et al. Extracellular vesicles from adipose-derived mesenchymal stem cells improve ligament-bone integration after anterior cruciate ligament primary repair in rabbit[J]. Biomolecules, 2025, 15(3):396. doi: 10.3390/biom15030396.
26
Tian L, Wang Z, Chen S, et al. Ellagic acid-loaded sEVs encapsulated in GelMA hydrogel accelerate diabetic wound healing by activating EGFR on skin repair cells[J]. Cell proliferation, 2025, 19:e70064. doi: 10.1111/cpr.70064.
27
Xu M, Diao L, Xu X, et al. Proteins from stressed mesenchymal stem cells can repair hair follicles and promote hair regeneration[J]. ACS Pharmacol Transl Sci, 2025, 8(6):1768-1777.
28
Gao X, Chen Y, Wang J, et al. Mitochondria-rich extracellular vesicles from bone marrow stem cells mitigate muscle degeneration in rotator cuff tears in a rat model through macrophage M2 phenotype conversion[J]. Arthroscopy, 2025, 25:S0749-8063(25)00229-4.
29
Huang J, Shi L, Yang Y, et al. Mesenchymal cell-derived exosomes and miR-29a-3p mitigate renal fibrosis and vascular rarefaction after renal ischemia reperfusion injury[J]. Stem Cell Res Ther, 2025, 16(1):135. doi: 10.1186/s13287-025-04226-4.
30
Li P. Comparative breakthrough: umbilical cord mesenchymal stem cells vs bone marrow mesenchymal stem cells in heart failure treatment[J]. World J Cardiol, 2024, 16(12):776-780.
31
Shi X, Zhang K, Qi Q, et al. Human umbilical cord-derived mesenchymal stem cells attenuate hepatic stellate cells activation and liver fibrosis[J]. Molecular Biology Reports, 2024, 51(1):734. doi: 10.1007/s11033-024-09664-6.
32
Pellegrini G, Ardigò D, Milazzo G, et al. Navigating market authorization:the path Holoclar took to become the first stem cell product approved in the European Union[J]. Stem Cells Transl Med, 2018, 7(1):146-154.
33
Kawatani K, Omana Suarez G, Perkerson RB, et al. Human iPSC-derived MSCs induce neurotrophic effects and improve metabolic activity in acute neuronal injury models[J]. J Neurosci, 2025, 45(1):e0606242024. doi: 10.1523/JNEUROSCI.0606-24.2024.
34
Wang M, Hao Y, He W, et al. Nebulized mesenchymal stem cell-derived exosomes attenuate airway inflammation in a rat model of chronic obstructive pulmonary disease[J]. Cell Immunol, 2025, 409-410:104933. doi: 10.1016/j.cellimm.2025.104933.
35
Liu S, Liu W, Liu Y, et al. Repair effect of adipose-derived mesenchymal stem cell-conditioned medium on cyclophosphamide-induced ovarian injury in mice[J]. Reprod Toxicol, 2025, 135:108923. doi: 10.1016/j.reprotox.2025.108923.
36
Zhao J, Zhou YH, Zhao YQ, et al. Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering[J]. Stem Cell Res Ther, 2023, 14(1):39. doi:10.1186/s13287-023-03265-z.
37
Xue N, Ding X, Huang R, et al. Bone tissue engineering in the treatment of bone defects[J]. Pharmaceuticals (Basel), 2022, 15(7):879. doi: 10.3390/ph15070879.
38
Aghebati-Maleki L, Dolati S, Zandi R, et al. Prospect of mesenchymal stem cells in therapy of osteoporosis: a review[J]. J Cell Physiol, 2019, 234(6):8570-8578.
39
Tanaka K, Ogino R, Yamakawa S, et al. Role and function of mesenchymal stem cells on fibroblast in cutaneous wound healing[J]. Biomedicines, 2022, 10(6):1391. doi: 10.3390/biomedicines10061391.
40
Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors[J].Ciba Found Symp, 1988, 136:42-60.
41
Claros S, Rico-Llanos GA, Becerra J, et al. A novel human TGF-β1 fusion protein in combination with rhBMP-2 increases chondro-osteogenic differentiation of bone marrow mesenchymal stem cells[J]. Int J Mol Sci, 2014, 15(7):11255-11274.
42
Kohno Y, Lin T, Pajarinen J, et al. Osteogenic ability of rat bone marrow concentrate is at least as efficacious as mesenchymal stem cells in vitro[J]. J Biomed Mater Res B Appl Biomater, 2019, 107(8):2500-2506.
43
Khorasani HR, Sanchouli M, Mehrani J, et al. Potential of bone-marrow-derived mesenchymal stem cells for maxillofacial and periodontal regeneration: a narrative review[J]. Int J Dent, 2021, 2021:4759492. doi: 10.1155/2021/4759492.
44
Kargozar S, Mozafari M, Hashemian SJ, et al. Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: a comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton's jelly, and adipose tissue[J]. J Biomed Mater Res B Appl Biomater, 2018, 106(1):61-72.
45
Yang J, Zhang YS, Yue K, et al. Cell-laden hydrogels for osteochondral and cartilage tissue engineering[J]. Acta Biomaterialia, 2017, 57:1-25.
46
Torres-Torrillas M, Rubio M, Damia E, et al. Adipose-derived mesenchymal stem cells: a promising tool in the treatment of musculoskeletal diseases[J]. Int J Mol Sci, 2019, 20(12):3105. doi: 10.3390/ijms20123105.
47
Shin S, Lee J, Kwon Y, et al. Comparative proteomic analysis of the mesenchymal stem cells secretome from adipose, bone marrow, placenta and Wharton's jelly[J]. Int J Mol Sci, 2021, 22(2):845. doi: 10.3390/ijms22020845.
48
Bunnell BA. Adipose tissue-derived mesenchymal stem cells[J] Cells, 2021, 10(12):3433. doi: 10.3390/cells10123433.
49
Liao HT, Chen CT. Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells[J]. World J Stem Cells, 2014, 6(3):288-295.
50
Westhauser F, Senger AS, Reible B, et al. In vivo models for the evaluation of the osteogenic potency of bone substitutes seeded with mesenchymal stem cells of human origin: a concise review[J]. Tissue Eng Part C Methods, 2017, 23(12):881-888.
51
Tang D, Tare RS, Yang LY, et al. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration[J]. Biomaterials, 2016, 83:363-382.
52
Khojasteh A, Fahimipour F, Jafarian M, et al. Bone engineering in dog mandible: coculturing mesenchymal stem cells with endothelial progenitor cells in a composite scaffold containing vascular endothelial growth factor[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(7):1767-1777.
53
Gjerde C, Mustafa K, Hellem S, et al. Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial[J]. Stem Cell Res Ther, 2018, 9(1):213. doi: 10.1186/s13287-018-0951-9.
54
Katagiri W, Watanabe J, Toyama N, et al. Clinical study of bone regeneration by conditioned medium from mesenchymal stem cells after maxillary sinus floor elevation[J].Implant Dent, 2017, 26(4):607-612.
55
Awidi A, Al Shudifat A, El Adwan N, et al. Safety and potential efficacy of expanded mesenchymal stromal cells of bone marrow and umbilical cord origins in patients with chronic spinal cord injuries: a phase I/II study[J]. Cytotherapy, 2024, 26(8):825-831.
56
Ismail HD, Phedy P, Kholinne E, et al. Mesenchymal stem cell implantation in atrophic nonunion of the long bones[J]. Bone Joint Res, 2016, 5(7):287-293.
57
Al-Najar M, Khalil H, Al-Ajlouni J, et al. Intra-articular injection of expanded autologous bone marrow mesenchymal cells in moderate and severe knee osteoarthritis is safe: a phase I/II study[J]. J Orthop Surg Res, 2017, 12(1):190. doi: 10.1186/s13018-017-0689-6.
58
Tiwari N, Osorio-Blanco ER, Sonzogni A, et al. Nanocarriers for skin applications: where do we stand?[J]. Angew Chem Int Ed Engl, 2022, 61(3):e202107960. doi: 10.1002/anie.202107960.
59
Chambers ES, Vukmanovic-Stejic M. Skin barrier immunity and ageing[J]. Immunology, 2020, 160(2):116-125.
60
Yan C, Xv Y, Lin Z, et al. Human umbilical cord mesenchymal stem cell-derived exosomes accelerate diabetic wound healing via ameliorating oxidative stress and promoting angiogenesis[J]. Front Bioeng Biotechnol, 2022, 10:829868. doi: 10.3389/fbioe.2022.829868.
61
Sun J, Zhang Y, Song X, et al. The healing effects of conditioned medium derived from mesenchymal stem cells on radiation-induced skin wounds in rats[J]. Cell Transplantation, 2018, 28(1):105-115.
62
Ding J, Wang X, Chen B, et al. Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis[J]. Biomed Res Int, 2019, 2019:9742765. doi: 10.1155/2019/9742765.
63
Tutuianu R, Rosca A-M, Albu Kaya MG, et al. Mesenchymal stromal cell-derived factors promote the colonization of collagen 3D scaffolds with human skin cells[J]. J Cell Mol Med, 2020, 24(17):9692-9704.
64
Joseph A, Baiju I, Bhat IA, et al. Mesenchymal stem cell-conditioned media: a novel alternative of stem cell therapy for quality wound healing[J]. J Cell Physiol, 2020, 235(7-8):5555-5569.
65
Zhang C, Wang T, Zhang L, et al. Combination of lyophilized adipose-derived stem cell concentrated conditioned medium and polysaccharide hydrogel in the inhibition of hypertrophic scarring[J]. Stem Cell Res Ther, 2021, 12(1):23. doi: 10.1186/s13287-020-02061-3.
66
Kim GB, Shon OJ, Seo MS, et al. Mesenchymal stem cell-derived exosomes and their therapeutic potential for osteoarthritis[J]. Biology (Basel), 2021, 10(4):285. doi: 10.3390/biology10040285.
67
Yin S, Ji C, Wu P, et al. Human umbilical cord mesenchymal stem cells and exosomes: bioactive ways of tissue injury repair[J]. Am J Transl Res, 2019, 11(3):1230-1240.
68
Driscoll J, Patel T. The mesenchymal stem cell secretome as an acellular regenerative therapy for liver disease[J]. J Gastroenterol, 2019, 54(9):763-773.
69
Chang C, Yan J, Yao Z, et al. Effects of mesenchymal stem cell-derived paracrine signals and their delivery strategies[J]. Adv Healthc Mater, 2021, 10(7):e2001689. doi: 10.1002/adhm.202001689.
70
Asgarpour K, Shojaei Z, Amiri F, et al. Exosomal microRNAs derived from mesenchymal stem cells: cell-to-cell messages[J]. Cell Commun Signal, 2020, 18(1):149. doi: 10.1186/s12964-020-00650-6.
71
Krawczenko A, Bielawska-Pohl A, Paprocka M, et al. Microvesicles from human immortalized cell lines of endothelial progenitor cells and mesenchymal stem/stromal cells of adipose tissue origin as carriers of bioactive factors facilitating angiogenesis[J]. Stem Cells Int, 2020, 2020:1289380. doi: 10.1155/2020/1289380.
72
Maacha S, Sidahmed H, Jacob S, et al. Paracrine mechanisms of mesenchymal stromal cells in angiogenesis[J]. Stem cells international, 2020, 2020:4356359. doi: 10.1155/2020/4356359.
73
Zhu Z, Zhang X, Hao H, et al. Exosomes derived from umbilical cord mesenchymal stem cells treat cutaneous nerve damage and promote wound healing[J]. Front Cell Neurosci, 2022, 16:913009. doi: 10.3389/fncel.2022.913009.
74
Ntege EH, Sunami H, Shimizu Y. Advances in regenerative therapy: a review of the literature and future directions[J]. Regenerative Therapy, 2020, 14:136-153.
75
Charles-de-Sá L, Gontijo-de-Amorim NF, Rigotti G, et al. Photoaged skin therapy with adipose-derived stem cells[J]. Plast Reconstr Surg, 2020, 145(6):1037e-1049e.
76
Zhang C, Huang L, Wang X, et al. Topical and intravenous administration of human umbilical cord mesenchymal stem cells in patients with diabetic foot ulcer and peripheral arterial disease: a phase I pilot study with a 3-year follow-up[J]. Stem Cell Res Ther, 2022, 13(1):451. doi: 10.1186/s13287-022-03143-0.
77
Levin A, Tonelli M, Bonventre J, et al. Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy[J]. Lancet, 2017, 390(10105):1888-1917.
78
Li J-S, Li B. Renal injury repair: how about the role of stem cells[J]. Adv Exp Med Biol, 2019, 1165:661-670.
79
Lentine KL, Kasiske BL, Levey AS, et al. Summary of kidney disease: improving global outcomes (KDIGO) clinical practice guideline on the evaluation and care of living kidney donors[J]. Transplantation, 2017, 101(8):1783-1792.
80
Fraser SDS, Roderick PJ. Kidney disease in the global burden of disease study 2017[J]. Nat Rev Nephrol, 2019, 15(4):193-194.
81
Susantitaphong P, Cruz DN, Cerda J, et al. World incidence of AKI: a meta-analysis[J]. Clin J Am Soc Nephrol, 2013, 8(9):1482-1493.
82
Ronco C, Bellomo R, Kellum JA. Acute kidney injury[J]. Lancet, 2019, 394(10212):1949-1964.
83
Lu Y, Wang L, Zhang M, et al. Mesenchymal stem cell-derived small extracellular vesicles: a novel approach for kidney disease treatment[J]. Int J Nanomedicine, 2022, 17:3603-3618.
84
Steen EH, Wang X, Balaji S, et al. The role of the anti-inflammatory cytokine interleukin-10 in tissue fibrosis[J]. Adv Wound Care, 2020, 9(4):184-198.
85
Marbun MBH, Septiana D, Shatri H, et al. Factors affecting the quality of life of patients after kidney transplantation: a cross-sectional study[J]. Acta Med Indones, 2023, 55(2):187-193.
86
Fazekas B, Griffin MD. Mesenchymal stromal cell–based therapies for acute kidney injury: progress in the last decade[J]. Kidney Int, 2020, 97(6):1130-1140.
87
Lee JH, Ha DH, Go H-k, et al. Reproducible large-scale isolation of exosomes from adipose tissue-derived mesenchymal stem/stromal cells and their application in acute kidney injury[J]. Int J Mol Sci, 2020, 21(13):4774. doi: 10.3390/ijms21134774.
88
Fu Z, Zhang Y, Geng X, et al. Optimization strategies of mesenchymal stem cell-based therapy for acute kidney injury[J]. Stem Cell Res Ther, 2023, 14(1):116. doi: 10.1186/s13287-023-03351-2.
89
Swaminathan M, Kopyt N, Atta MG, et al. Pharmacological effects of Ex vivo mesenchymal stem cell immunotherapy in patients with acute kidney injury and underlying systemic inflammation[J]. Stem Cells Transl Med, 2021, 10(12):1588-1601.
90
Cao J, Wang B, Tang T, et al. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury[J]. Stem Cell Res Ther, 2020, 11(1):206. doi: 10.1186/s13287-020-01719-2.
91
Tögel FE, Westenfelder C. Kidney protection and regeneration following acute injury: progress through stem cell therapy[J]. Am J Kidney Dis, 2012, 60(6):1012-1022.
92
Saad A, Dietz AB, Herrmann SMS, et al. Autologous mesenchymal stem cells increase cortical perfusion in renovascular disease[J]. J Am Soc Nephrol, 2017, 28(9):2777-2785.
93
Wong CY. Current advances of stem cell-based therapy for kidney diseases[J]. World J Stem Cells, 2021, 13(7):914-933.
94
Ullah M, Liu DD, Thakor AS. Mesenchymal stromal cell homing: mechanisms and strategies for improvement[J]. iScience, 2019, 15:421-438.
95
王依婷,江杰,马丽, 等. 间充质干细胞及其衍生物对供肝修复的潜在价值[J]. 器官移植, 2023, 14(4):592-597.
96
Fang X, Liu L, Dong J, et al. A study about immunomodulatory effect and efficacy and prognosis of human umbilical cord mesenchymal stem cells in patients with chronic hepatitis B-induced decompensated liver cirrhosis[J]. J Gastroenterol Hepatol, 2018, 33(4):774-780.
97
Yagi S, Hirata M, Miyachi Y, et al. Liver regeneration after hepatectomy and partial liver transplantation[J]. Int J Mol Sci, 2020, 21(21):8414. doi: 10.3390/ijms21218414.
98
Kang SH, Kim MY, Eom YW, et al. Mesenchymal stem cells for the treatment of liver disease: present and perspectives[J]. Gut Liver, 2020, 14(3):306-315.
99
Husein AL, Liem IK. Pathomechanism of liver fibrosis and mesenchymal stem cells in its resolution process[J]. Open Access Maced J Med Sci, 2023, 11(F):86-94.
100
Hu C, Zhao L, Duan J, et al. Strategies to improve the efficiency of mesenchymal stem cell transplantation for reversal of liver fibrosis[J]. J Cell Mol Med, 2019, 23(3):1657-1670.
101
Lee C, Kim M, Han J, et al. Mesenchymal stem cells influence activation of hepatic stellate cells, and constitute a promising therapy for liver fibrosis[J]. Biomedicines, 2021, 9(11):1598. doi: 10.3390/biomedicines9111598.
102
李明颖,赵春亭,崔渤莉,等.脐血间充质干细胞对白血病细胞增殖和凋亡的影响及其机制[J].中国实验血液学杂志, 2017, 25(3):896-903.
103
Nevens F, van der Merwe S. Mesenchymal stem cell transplantation in liver diseases[J]. Semin Liver Dis, 2022, 42(3):283-292.
104
Xu L, Gong Y, Wang B, et al. Randomized trial of autologous bone marrow mesenchymal stem cells transplantation for hepatitis B virus cirrhosis: regulation of Treg/Th17 cells[J]. J Gastroenterol Hepatol, 2014, 29(8):1620-1628.
105
Jang YO, Kim YJ, Baik SK, et al. Histological improvement following administration of autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: a pilot study[J]. Liver Int, 2014, 34(1):33-41.
106
Wang L, Han Q, Chen H, et al. Allogeneic bone marrow mesenchymal stem cell transplantation in patients with UDCA-resistant primary biliary cirrhosis[J]. Stem Cells Dev, 2014, 23(20):2482-2489.
107
Xie Q, Liu R, Jiang J, et al. What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment?[J]. Stem Cell Res Ther, 2020, 11(1):519. doi: 10.1186/s13287-020-02011-z.
108
Soltani L, Mahdavi AH. Role of signaling pathways during cardiomyocyte differentiation of mesenchymal stem cells[J]. Cardiology, 2022, 147(2):216-224.
109
Mathiasen AB, Qayyum AA, Jørgensen E, et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with ischaemic heart failure: final 4-year follow-up of the MSC-HF trial[J]. Eur J Heart Fail, 2020, 22(5):884-892.
110
Florea V, Rieger AC, DiFede DL, et al. Dose comparison study of allogeneic mesenchymal stem cells in patients with ischemic cardiomyopathy (The TRIDENT Study)[J]. Circ Res, 2017, 121(11):1279-1290.
111
Ning Y, Huang P, Chen G, et al. Atorvastatin-pretreated mesenchymal stem cell-derived extracellular vesicles promote cardiac repair after myocardial infarction via shifting macrophage polarization by targeting microRNA-139-3p/Stat1 pathway[J]. BMC Medicine, 2023, 21(1):96. doi: 10.1186/s12916-023-02778-x.
112
Kozlowska U, Krawczenko A, Futoma K, et al. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues[J]. World J Stem Cells, 2019, 11(6):347-374.
113
Prager P, Kunz M, Ebert R, et al. Mesenchymal stem cells isolated from the anterior cruciate ligament: characterization and comparison of cells from young and old donors[J]. Knee Surg Relat Res, 2018, 30(3):193-205. doi: 10.5792/ksrr.17.067.
114
García-Muñoz E, Vives J. Towards the standardization of methods of tissue processing for the isolation of mesenchymal stromal cells for clinical use[J]. Cytotechnology, 2021, 73(3):513-522.
115
Confalonieri D, Schwab A, Walles H, et al. Advanced therapy medicinal products: a guide for bone marrow-derived MSC application in bone and cartilage tissue engineering[J]. Tissue Eng Part B Rev, 2017, 24(2):155-169.
116
Sandvig I, Gadjanski I, Vlaski-Lafarge M, et al. Strategies to enhance implantation and survival of stem cells after their injection in ischemic neural tissue[J]. Stem Cells Dev, 2017, 26(8):554-565.
117
De Becker A, Riet IV. Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy?[J]. World J Stem Cells, 2016, 8(3):73-87.
118
刘姝岑,朱雪红,宾力,等.间充质干细胞在子宫内膜损伤修复中的机制研究进展[J].江苏大学学报(医学版),2023,33(1):84-92.
119
Bhat S, Viswanathan P, Chandanala S, et al. Expansion and characterization of bone marrow derived human mesenchymal stromal cells in serum-free conditions[J]. Sci Rep, 2021, 11(1):3403. doi: 10.1038/s41598-021-83088-1.
120
Zhidu S, Ying T, Rui J, et al. Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: challenges and opportunities[J]. Stem Cell Res Ther, 2024, 15(1):266. doi: 10.1186/s13287-024-03885-z.
121
Ramesh S, Govarthanan K, Ostrovidov S, et al. Cardiac differentiation of mesenchymal stem cells: impact of biological and chemical inducers[J]. Stem Cell Rev Rep, 2021, 17(4):1343-1461.
[1] 金钰婷, 苑龙, 齐晓伟, 姜军. 乳腺癌非根治性手术临床研究证据[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 65-69.
[2] 张卿, 张长青, 黄轶刚. 全球股髋撞击综合征临床研究注册信息的分析与思考[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 27-33.
[3] 房昊宇, 王筱, 张安伟, 尚丹丹, 俞炯, 曹红翠. 基于粪便代谢组学分析间充质干细胞治疗克罗恩病小鼠的有效性生物标志物[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(02): 98-104.
[4] 张晓波, 巴特, 黄瑞娟, 王宏宇. 间充质干细胞外泌体改善急性肺损伤机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 81-85.
[5] 曾繁润, 林永勇, 王君. 间充质干细胞外泌体促进创面血管新生机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 86-89.
[6] 刘沐芸, 侯凯翔, 韩奇鹏, 崔诗慧, 魏殿华, 符业优, 丁关焱, 从丽萍, 梁晓, 安刚. 脂肪与骨髓间充质干细胞的免疫调节作用及协同治疗潜力分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 220-228.
[7] 李雪铭, 伊诺, 卢智豪, 冯婧, 董健藤, 李健. 人脐带间充质干细胞来源外泌体抑制肝星状细胞活化发挥抗肝纤维化作用的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 148-156.
[8] 张剑豪, 蔡丹文, 蒋辰浩, 张宇君, 韩路, 赵雪刚, 吕行, 萧家麒, 张杰滨, 隋昕, 张英才. 过表达POSTN 的间充质干细胞来源外泌体增强肝脏再生能力[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 65-74.
[9] 梁瑶瑶, 邬绿莹, 陈津. 负载干细胞外泌体水凝胶治疗糖尿病足溃疡的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 112-119.
[10] 卓馨怡, 祝宇翀, 刘军权, 廖雨琴. 间充质干细胞制备的纳米囊泡在疾病治疗中的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(01): 57-62.
[11] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[12] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[13] 张可颖, 冀雨薇, 付章宁, 张益帆, 王晓晨, 杨滟, 陈香美, 蔡广研, 洪权. 人参皂苷Rb1 预处理间充质干细胞的转录组分析及急性肾损伤治疗关键基因挖掘[J/OL]. 中华肾病研究电子杂志, 2025, 14(01): 26-33.
[14] 黎健, 张欣欣, 朱铁兵. 研究者发起的临床研究数据管理评价指标体系的构建[J/OL]. 中华临床实验室管理电子杂志, 2025, 13(02): 65-71.
[15] 张睿旻, 朱红梅, 刘雁军. 中国肥胖代谢外科临床研究现状及展望:一项计量学研究[J/OL]. 中华肥胖与代谢病电子杂志, 2025, 11(01): 1-10.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?