切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (04) : 220 -228. doi: 10.3877/cma.j.issn.2095-1221.2025.04.005

综述

脂肪与骨髓间充质干细胞的免疫调节作用及协同治疗潜力分析
刘沐芸1,2,3, 侯凯翔1,3, 韩奇鹏1,3,6, 崔诗慧1,3, 魏殿华1,3, 符业优1,3, 丁关焱1,3, 从丽萍1,3, 梁晓1,4, 安刚5,()   
  1. 1518000 深圳科诺医学检验实验室
    2518000 深圳,细胞产业关键共性技术国家工程研究中心
    3518000 深圳芸诺生物科技有限公司
    4518057 深圳市北科生物科技有限公司
    5350000 福州,福建省妇幼保健院细胞医学中心
    6410128 长沙,湖南农业大学动物科学技术学院
  • 收稿日期:2025-02-17 出版日期:2025-08-01
  • 通信作者: 安刚
  • 基金资助:
    细胞产业关键共性技术国家工程研究中心建设项目(发改高技[2023]447号); 深圳市非侵入性细胞质量在线监测和分析平台(F-2022-Z99-502233)

Potential immunomodulatory effects and combined application of adipose-derived mesenchymal stem cells and bone marrow-derived mesenchymal stem cells

Muyun Liu1,2,3, Kaixiang Hou1,3, Qipeng Han1,3,6, Shihui Cui1,3, Dianhua Wei1,3, Yeyou Fu1,3, Guanyan Ding1,3, Liping Cong1,3, Xiao Liang1,4, Gang An5,()   

  1. 1Shenzhen Kono Laboratory of Medical Laboratory, Shenzhen 518000, China
    2National Engineering Research Center of Key Generic Technologies for Cell Industry, Shenzhen 518000, China
    3Shenzhen Yunnuo Biotechnology Co., LTD., Shenzhen 518000, China
    4Shenzhen Beike Biotechnology Co., LTD., Shenzhen 518057, China
    5Fujian Women and Children's Hospital-Cell Medicine Center, Fuzhou 350000, China
    6College of Animal Science and Tehnology, Hunan Agricultural University, Changsha 410128, China
  • Received:2025-02-17 Published:2025-08-01
  • Corresponding author: Gang An
引用本文:

刘沐芸, 侯凯翔, 韩奇鹏, 崔诗慧, 魏殿华, 符业优, 丁关焱, 从丽萍, 梁晓, 安刚. 脂肪与骨髓间充质干细胞的免疫调节作用及协同治疗潜力分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 220-228.

Muyun Liu, Kaixiang Hou, Qipeng Han, Shihui Cui, Dianhua Wei, Yeyou Fu, Guanyan Ding, Liping Cong, Xiao Liang, Gang An. Potential immunomodulatory effects and combined application of adipose-derived mesenchymal stem cells and bone marrow-derived mesenchymal stem cells[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(04): 220-228.

脂肪间充质干细胞(ADMSCs)与骨髓间充质干细胞(BMSCs)作为成体干细胞的重要来源,在免疫调节和组织修复领域展现出巨大的潜力。本文系统综述ADMSCs与BMSCs对T细胞(Th1/Th2/Th17/Treg)、B细胞、树突状细胞、巨噬细胞及自然杀伤(NK)细胞的调控机制,揭示二者在免疫抑制途径上的共性与特性。二者通过时空协同效应提升疗效,而异源细胞混合治疗面临生物安全性挑战。本文进一步提出标准化质量控制体系及动态剂量调控策略,为优化干细胞治疗提供理论依据与转化路径。

Adipose-derived mesenchymal stem cells (ADMSCs) and bone marrow-derived mesenchymal stem cells (BMSCs), as crucial sources of adult stem cells, exhibiting significant potential in the fields of immunomodulation and tissue repair. This article systematically reviews the regulatory mechanisms of ADMSCs and BMSCs on T cells (Th1/Th2/Th17/Treg), B cells, dendritic cells, macrophages, and natural killer (NK) cells, elucidating their shared and distinct characteristics in immunosuppressive pathways. Their spatiotemporal synergistic effects significantly enhance therapeutic efficacy, while heterologous cell combination therapy faces biosafety challenges. Furthermore, this study proposes a standardized quality control system and dynamic dosage regulation strategy, providing a theoretical foundation and translational pathway for optimizing stem cell therapy.

表1 BMSCs免疫调节作用机制与功能效应
免疫细胞类型 作用机制 涉及的因子/分子 功能效果
CD4+ T细胞 直接抑制增殖:抑制IL-2分泌及自然杀伤细胞活性;上调CD4+ CD25+ Treg细胞,抑制IFN-γ、IL-4等促炎因子[13];在炎症环境中促进IL-17产生[11] TGF-β、Foxp3、IL-2、IFN-γ、IL-4、IL-17[9] 抑制T细胞活化[10]和炎症反应[9],促进免疫耐受
Th1/Th2细胞 降低IL-17、IL-22、IFN-γ、TNF-α水平;抑制CD4+ T细胞向Th1分化;增加Th2细胞数量,改变Th1/Th2比例;通过CCR6抑制Th1细胞黏附[9] IL-17、IL-22、IFN-γ、TNF-α、CCR6[9] 抑制促炎反应,增强抗炎作用,促进Treg细胞功能[9]
Treg TGF-β促进Fox3表达,增强Treg扩增[11];通过分泌可溶性因子增强Treg的抗炎作用[11] TGF-β、Foxp3、IL-10[11] 增强免疫抑制和抗炎功能[11]
CD8+ T细胞 直接接触抑制:通过BMSCs表面MICA/B与CD8+ T细胞NKG2D结合,下调NKG2D表达;分泌PGE2、IDO、TGF-β抑制活性[10] MICA/B、NKG2D、PGE2、IDO、TGF-β[14] 抑制增殖和细胞毒性功能[14]
B细胞 直接抑制B细胞增殖[11] 未明确具体因子 抑制B细胞活化和抗体产生[11]
DCs 抑制IL-1等细胞因子,减少促炎因子(IFN-γ、IL-12、TNF-α)分泌;促进抗炎因子IL-10分泌[11,15] IL-1、IFN-γ、IL-12、TNF-α、IL-10[11,15] 降低DCs对T细胞的刺激能力,抑制炎症反应[15]
巨噬细胞/小胶质细胞 促进M1型(促炎)向M2型(抗炎)转化[16];减少TNF-α、IL-1β分泌,增加IL-10、TGF-β分泌[17];通过调节AMPK/NF-κB通路抑制活化[18];分泌TSG-6抑制TLR2/MyD88/NF-κB通路[18] TNF-α、IL-1β、IL-10、TGF-β、AMPK/NF-κB、TSG-6[16,17,18] 减轻神经炎症和中枢敏化[18],缓解疼痛,抑制过度免疫反应[16]
NK细胞 抑制静息态NK细胞增殖和IFN-γ分泌(通过IDO、PGE2)[19];增强IL-12/IL-18预激活NK细胞的IFN-γ分泌(保留细胞毒性功能)[19];抑制IL-12/IL-18诱导的NK细胞活性[19] IDO、PGE2、IL-12、IL-18、IFN-γ[19,20] 双向调节:抑制静息态NK细胞功能,增强激活态NK细胞的抗病毒、肿瘤反应能力[19]
表2 ADMSCs免疫调节作用机制与功能效应
表3 BMSCs和ADMSCs对免疫细胞亚群的差异化调控
表4 BMSCs和ADMSCs的分子通路与关键调控因子对比
1
Liechty KW, Mackenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep[J]. Nat Med, 2000, 6(11):1282-1286.
2
Wu CC, Wang F, Rong S, et al. Enhancement of osteogenesis of rabbit bone marrow derived mesenchymal stem cells by ransfection of human BMP-2 and EGFP recombinant adenovirus via Wnt signaling pathway[J]. Exp Ther Med, 2018, 16(5):4030-4036.
3
Yang CY, Chang PY, Chen JY, et al. Adipose-derived mesenchymal stem cells attenuate dialysis-induced peritoneal fibrosis by modulating macrophage polarization via interleukin-6[J]. Stem Cell Res Ther, 2021, 12(1):193.
4
Chen CC, Chen RF, Shao JS, et al. Adipose- derived stromal cells modulating composite allotransplant survival is correlated with B cell regulation in a rodent hind-limb allotransplantation model[J]. Stem Cell Res Ther, 2020, 11(1):478.
5
Ma XF, Ma XB, Qian WJ, et al. Co-culture of adipose-derived stem cells and chondrocytes with transforming growth factor-beta 3 promotes chondrogenic differentiation[J]. J Craniofac Surg, 2020, 31(8):2355-2359.
6
Eljaafari A, Pestel J, Le Magueresse-Battistoni B, et al. Adipose-tissue-derived mesenchymal stem cells mediate PD-L1 overexpression in the white adipose tissue of obese individuals, resulting in T cell dysfunction[J]. Cells, 2021, 10(10):2645.
7
Chao KC, Chao KF, Fu YS, et al. Islet-like clusters derived from mesenchymal stem cell in Wharton's jelly of the human umbilical cord for transplantation to control type 1 diabetes[J]. PLoS One, 2008, 3(1):e1451.
8
Coenen JJ, Koenen HJ, van Rijssen E, et a1. CTLA-4 engagement and regulatory CD4+ CD25+ T cells independently control CD8+-mediated responses under costimulation blockade[J]. J Immunol, 2006, 176(9):5240-5246.
9
Jui HY, Lin CH, Hsu WT. et al. Autologous mesenchymal stem cells prevent transplant arteriosclerosis by enhancing local expression of interleukin-10, interferon-γ, and indoleamine 2,3-dioxygenase[J]. Cell transplantation, 2012, 21(5):971-984.
10
汤天生. 同基因骨髓间充质干细胞诱导大鼠心脏移植免疫耐受[D]. 福州:福建医科大学, 2012.
11
赵敏. 骨髓间充质干细胞通过Treg细胞及IL-10延长大鼠异位移植心脏存活[D]. 郑州:郑州大学, 2018.
12
清泉,黄长形. CD4+ CD25+调节性T细胞和感染免疫[J]. 医学研究生学报, 2006, 19(8):741-744.
13
付裕,滕银燕,徐朝伟, 等. 骨髓间充质干细胞对实验性自身免疫性重症肌无力大鼠的治疗作用[J]. 中国现代神经疾病杂志, 2012, 12(1):161-165.
14
李明芬. 骨髓间充质干细胞对CD8+ T淋巴细胞的免疫调节功能及其机制研究[D]. 南宁:广西医科大学, 2014.
15
Menard C, Pacelli L, Bassi G, et al. Clin-grade mesenchymal stromal cells produced under various good manufacturing practice processes differ in their immunomodulatory properties:standardization of immune quality controls[J]. Stem Cells Dev, 2013, 22(12):1789-1801.
16
Zhong Z, Chen A, Fa Z, et al. Bone marrow mesenchymal stem cells upregulate PI3K/AKT pathway and down-regulate NF-кB pathway by secreting glial cell-derived neurotrophic factors to regulate microglial polarization and alleviate deafferentation pain in rats[J]. Neurobiol Dis, 2020, 143:104945.
17
Teng Y, Zhang Y, Yue S, et al. Intrathecal injection of bone marrow stromal cells attenuates neuropathic pain via inhibition of P2X4R in spinal cord microglia[J]. J Neuroinflammation, 2019, 16(1):271.
18
Huh Y, Ji RR, Chen G. Neuroinflammation, bone marrow stem cells, and chronic pain[J]. Front Immunol, 2017, 8:1014.
19
Cui R, Rekasi H, Hepner-Schefczyk M, et al. Human mesenchymal stromal/stem cells acquire immunostimulatory capacity upon cross-talk with natural killer cells and might improve the NK cell function of immunocompromised patients[J]. Stem Cell Res Ther, 2016, 7(1):88.
20
Götherström C, Lundqvist A, Duprez IR, et al. Fetal and adult multipotent mesenchymal stromal cells are killed by different pathways[J]. Cytotherapy, 2011, 13(3):269-278.
21
朱希山,台卫平,施薇, 等. 骨髓和脂肪来源间充质干细胞的免疫调节作用[J]. 中国组织工程研究与临床康复, 2011, 15(36):6683-6686.
22
Engela AU, Baan CC, Peeters AM, et al. Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells[J]. Cell Transplant, 2013, 22(1):41-54.
23
Mahmoud M, Abdel-Rasheed M. Influence of type 2 diabetes and obesity on adipose mesenchymal stem/stromal cell immunoregulation[J]. Cell Tissue Res, 2023, 394(1):33-53.
24
Yañez R, Oviedo A, Aldea M, et al. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells[J]. Exp Cell Res, 2010, 316(19):3109-3123.
25
Peng W, Gao T, Yang ZL, et al. Adipose-derived stem cells induced dendritic cells undergo tolerance and inhibit Th1 polarization[J]. Cell Immunol, 2012, 278(1-2):152-157.
26
Payne NL, Dantanarayana A, Sun G, et al. Early intervention with gene-modified mesenchymal stem cells overexpressing interleukin-4 enhances anti-inflammatory responses and functional recovery inexperimental autoimmune demyelination[J]. Cell Adh Migr, 2012, 6(3):179-189.
27
Xiao J, Zhang C, Zhang Y, et al. Transplantation of adipose-derived mesenchymal stem cells into a murine model of passive chronic immune thrombocytopenia[J]. Transfusion, 2012, 52(12):2551-2558.
28
Zhou Y, Yuan J, Zhou B, et al. The therapeutic efficacy of human adipose tissue-derived mesenchymal stem cells on experimental autoimmune hearing loss in mice[J]. Immunology, 2011, 133(1):133-140.
29
Lai K, Zeng K, Zeng F, et al. Allogeneic adipose-derived stem cells suppress Th17 lymphocytes in patients with active lupus in vitro[J]. Acta Biochim Biophys Sin (Shanghai), 2011, 43(10):805-812.
30
Crop MJ, Baan CC, Korevaar SS, et al. Human adipose tissue-derived mesenchymal stem cells induce explosive T-cell proliferation[J]. Stem Cells Dev, 2010, 19(12):1843-1853.
31
González MA, Gonzalez-Rey E, Rico L, et al. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells[J]. Arthritis Rheum, 2009, 60(4):1006-1019.
32
Afzali B, Mitchell P, Lechler RI, et al. Translational mini-review series on Th17 cells: induction of interleukin-17 production by regulatory T cells[J]. Clin Exp Immunol, 2010, 159(2):120-130.
33
王椋,徐敏,张慕华, 等. 人脂肪间充质干细胞与再生障碍性贫血患者T淋巴细胞的体外共培养[J]. 中国组织工程研究, 2014, 18 (10):1603-1608.
34
肖二彬,赵宝建,张驰. 脂肪间充质干细胞可调节变应性鼻炎T细胞的免疫状态[J]. 中国组织工程研究, 2016, 20 (10):1373-1381.
35
Kotani T, Saito T, Suzuka T, et al. Adipose-derived mesenchymal stem cell therapy for connective tissue diseases and complications[J]. Inflamm Regen, 2024, 44 (1):35.
36
Sozzani S, Del Prete A, Bosisio D. Dendritic cell recruitment and activation in autoimmunity[J]. J Autoimmun, 2017, 85:126-140.
37
Favaro E, Carpanetto A, Caorsi C, et al. Human mesenchymal stem cells and derived extracellular vesicles induce regulatory dendritic cells in type 1 diabetic patients[J]. Diabetologia, 2016, 59(2):325-333.
38
Zhao H, Shang Q, Pan Z, et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue[J]. Diabetes, 2018, 67(2):235-247.
39
Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization[J]. J Clin Invest, 2007, 117(1):175-184.
40
Phinney DG, Di Giuseppe M, Njah J, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs[J]. Nat Commun, 2015, 6:8472.
41
Mahmoud M, Abdel-Rasheed M, Galal ER, et al. Factors defining human adipose stem/stromal cell immunomodulation in vitro[J]. Stem Cell Rev Rep, 2024, 20 (1):175-205.
42
Molnar V, Pavelić E, Vrdoljak K, et al. Mesenchymal stem cell mechanisms of action and clinical effects in osteoarthritis: a narrative review[J]. Genes, 2022, 13(6):949.
43
Shuai Z, Zheng S, Wang K, et al. Reestablish immune tolerance in rheumatoid arthritis[J]. Front Immunol, 2022, 13:1012868.
44
Liang C, Jiang E, Yao J, et al. Interferon-γ mediates the immunosuppression of bone marrow mesenchymal stem cells on T-lymphocytes in vitro[J]. Hematology, 2018, 23(1):44-49.
45
Refaie AF, Elbassiouny BL, Kloc M, et al. From mesenchymal stromal/stem cells to insulin-producing cells: immunological considerations[J]. Front Immunol, 2021, 12:690623.
46
Yao Y, Li L, Wang H, et al. Activated AMP-activated protein kinase prevents hepatic steatosis, oxidative stress and inflammation in primary chicken hepatocytes[J]. Front Physiol, 2022, 13:974825.
47
Cai J, Wang Y, Wang X, et al. AMPK attenuates SHH subgroup medulloblastoma growth and metastasis by inhibiting NF-κB activation[J]. Cell Biosci, 2023, 13(1):15.
48
王俊龙,贾慧雨,冯志海, 等. 中医药调控AMPK信号通路防治肥胖2型糖尿病的研究进展[J]. 中国实验方剂学杂志, 2023, 29(21):264-273.
49
Hao Y, Wu L, Deng H, et al. Anti-inflammatory protein TSG-6 secreted by bone marrow mesenchymal stem cells attenuates neuropathic pain by inhibiting the TLR2/MyD88/NF-κB signaling pathway in spinal microglia[J]. J Neuroinflammation, 2020, 17(1):154.
50
Jenner RG, Townsend MJ, Jackson I, et al. The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes[J]. Proc Natl Acad Sci U S A, 2009, 106(42):17876-17881.
51
Hwang ES, Szabo SJ, Schwartzberg PL, et al. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3[J]. Science, 2005, 307 (5708):430-433.
52
Zhu J. Seventeen-year journey working with a master[J]. Front Immunol, 2018, 9:960.
53
Usui T, Preiss JC, Kanno Y, et al. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription[J]. J Exp Med, 2006, 203(3):755-766.
54
刘琨,罗新,李君, 等. 巨噬细胞极化调控颌骨再生的研究进展[J]. 口腔颌面修复学杂志, 2023, 24 (1):60-64.
55
沈玉凤. 巨噬细胞RORα感知IGF1/AMPK信号招募BMSCs促进糖尿病骨再生[D]. 武汉:华中科技大学, 2023.
56
聂利. 炎症微环境下BMSCs-GelMA/MS-BMP9的成骨作用及对巨噬细胞生物学行为影响和机制研究[D]. 重庆:重庆医科大学, 2023.
57
李贝贝. BMSCs来源的外泌体通过PINK1/Parkin信号通路调节巨噬细胞极化减轻大鼠骨关节炎[D]. 锦州:锦州医科大学, 2023.
58
刘琨. 巨噬细胞外泌体基于miR-21a-5p/GATA2促成骨分化的机制研究[D].济南:山东大学, 2022.
59
蔡慧华. 间充质干细胞诱导调节性T细胞治疗卵巢早衰的实验研究[D]. 广州:南方医科大学, 2017.
60
朱舜之. 阳和平喘颗粒对骨髓间充质干细胞移植后哮喘大鼠气道炎症的干预作用及Treg、STAT6的影响[D]. 合肥:安徽中医药大学, 2015.
61
Jagasia M, Perales MA, Schroeder MA, et al. Ruxolitinib for the treatment of steroid-refractory acute GVHD (REACH1): a multicenter, open-label phase 2 trial[J]. Blood, 2020, 135(20):1739-1749.
62
Im A, Rashidi A, Wang T, et al. Risk factors for graft-versus-host disease in haploidentical hematopoietic cell transplantation using post-transplant cyclophosphamide[J]. Biol Blood Marrow Transplant, 2020, 26(8):1459-1468.
63
Lim JY, Park MJ, Im KI, et al. Combination cell therapy using mesenchymal stem cells and regulatory T-cells provides a synergistic immunomodulatory effect associated with reciprocal regulation of TH1/TH2 and th17/treg cells in a murine acute graft-versus-host disease model[J]. Cell Trans, 2014, 23(6):703-714.
64
Ziemer M, Dumann K. Cutaneous manifestations of acute and chronic graft-versus-host disease after allogeneic stem cell transplantation[J]. Hautarzt, 2020, 71(7):557-568.
65
Lim JY, Ryu DB, Lee SE, et al. Mesenchymal stem cells (MSCs) attenuate cutaneous sclerodermatous graft-versus-host disease (Scl-GVHD) through inhibition of immune cell infiltration in a mouse model[J]. J Invest Dermatol, 2017, 137(9):1895-1904.
66
Alexander M, Lakshmi T, Surendar A, et al. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders[J]. Stem Cell Res Ther, 2021, 12(1):192.
67
Dulamea A. Mesenchymal stem cells in multiple sclerosis-translation to linical trials[J]. J Med Life, 2015, 8(1):24-27.
68
Llufriu S, Sepúlveda M, Blanco Y, et al. Randomized placebo-controlled phase Ⅱ trial of autologous mesenchymal stem cells in multiple sclerosis[J]. PLoS One, 2014, 9(12):e113936.
69
Wu X, Mu Y, Yao J, et al. Adipose-derived stem cells from patients with ulcerative colitis exhibit impaired immunosuppressive function[J]. Front Cell Dev Biol, 2022, 10:10822772.
70
Chetan M, Vinod K, Aruna R, et al. Safety and efficacy of autologous mesenchymal stromal cells transplantation in patients undergoing living donor kidney transplantation: a pilot study[J]. Nephrology (Carlton), 2015, 20(1):25-33.
71
Qin Y, Zhou Z, Zhang F, et al. Induction of regulatory B-cells by mesenchymal stem cells is affected by SDF-1a-CXCR7[J]. Cell Physiol Biochem, 2015, 37(1):117-130.
72
余逸凡,刘科杰,麦麦提图尔荪, 等. 脂肪干细胞治疗类风湿性关节炎的研究进展[J]. 中国当代医药, 2024, 31 (15):189-193, 198.
73
王静,蔡霞,王志国, 等. 分离与鉴定人脂肪间充质干细胞来源的外泌体[J].中国组织工程研究, 2019, 23(17):2651-2658.
74
Vasse GF, Van Os L, De Jager M, et al. Adipose stromal cell-secretome counteracts profibrotic signals from IPF lung matrices[J]. Frontiers in Pharmacology, 2021, 12(1):669037.
75
孙素和,王鹏,苏春燕, 等. 强直性脊柱炎患者骨髓间充质干细胞调控巨噬细胞的功能异常[J]. 中国组织工程研究, 2016, 20(1):13-19.
76
Pan W, Li S, Li K, et al. Mesenchymal stem cells and extracellular vesicles: therapeutic potential in organ transplantation[J]. Stem cells international, 2024, 2024:2043550.
77
吴邦耀. 新型组织工程神经支架材料的生物安全性评价[D]. 西安:第四军医大学, 2008.
78
协会召开《GMP附录-细胞治疗产品》征求意见座谈会[J]. 中国医药生物技术, 2020, 15(1):39.
79
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement[J]. Cytotherapy, 2006, 8(4):315-317.
80
林柱坚. 不同来源MSCs治疗膝骨关节炎疗效的网状Meta分析[D]. 广州:广东药科大学, 2022.
81
张蒙. 自体脂肪间充质干细胞联合胫骨高位截骨术治疗膝关节骨性关节炎临床研究[D]. 济南:山东大学, 2020.
82
Trivedi A, Miyazawa B, Gibb S, et al. Bone marrow donor selection and characterization of MSCs is critical for pre-clinical and clinical cell dose production[J]. J Transl Med, 2019, 17 (1):128.
83
Fu X, Chen Y, Xie FN, et al. Comparison of immunological characteristics of mesenchymal stem cells derived from human embryonic stem cells and bone marrow[J]. Tissue Eng Part A, 2015, 21(3-4):616-626.
84
Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged[J]. Nature biotechnology, 2014, 32(3):252-260.
85
Kim YG, Choi TG, Park J, et al. Comparative analysis of porcine adipose and Wharton's jelly-derived mesenchymal stem cells[J]. Animals, 2023, 13(18):2947.
86
袁晓阳,程刚,吴玉娇, 等. iPSC-MSCs体外对骨关节炎患者关节软骨组织的基质保护作用[J]. 安徽医科大学学报, 2022, 57(8):1247-1251.
87
Cuiping Z, Mina D, Peng H, et al. IL-10 mRNA engineered MSCs demonstrate enhanced anti-inflammation in an acute GVHD model[J]. Cells, 2021, 10(11):3101.
88
王大伟,陆雅斐,皇甫少华,陈玉婷,陈澳,江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(6): 361-366.
[1] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[2] 任玲, 但红霞. 沙利度胺及其衍生物在人类免疫缺陷病毒感染相关疾病中的应用[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(06): 321-326.
[3] 陈观梅, 左璇, 廖宝林. 慢性乙型肝炎新型免疫治疗研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(01): 7-10.
[4] 陈天, 李歆, 刘开政, 邓永强. 口腔钛种植体成骨性能的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 200-205.
[5] 邓欣怡, 曾振宇, 李晓岚. 细菌群体感应信号对宿主免疫调节机制的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 140-147.
[6] 苏浩, 曹明誉, 郭一苇, 刘小彭. 前列腺增生术后压力性尿失禁相关研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 103-110.
[7] 邓瑞锋, 程璐, 周宇林, 刘远灵, 江文聪, 江敏耀, 江福能, 习明. TGF-β1诱导骨髓间充质干细胞外泌体分泌miR-424-3p促进前列腺癌细胞增殖及转移[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 82-89.
[8] 向青, 龚道辉, 赵才林, 张硕辛, 秦蘅, 刘禹. 巨噬细胞参与免疫调节机制在肺动脉高压中的影响及相关纳米材料的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1027-1030.
[9] 黄瑛, 侯田田, 金紫怡, 耿兴超. 干细胞治疗国内外监管现状概述及对我国监管体系完善的启示[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 120-126.
[10] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[11] 郭庆, 李冠琳, 刘慧, 魏炜, 于洋, 张纯. 脂肪间充质干细胞治疗糖尿病及其慢性并发症的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 58-62.
[12] 刘然然, 方倩倩, 唐泽文. 周围神经损伤对骨髓间充质干细胞增殖及成骨分化影响的研究[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(01): 7-11.
[13] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
[14] 陆天, 孙道萍. 调节性B细胞在多发性骨髓瘤中的研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(02): 133-137.
[15] 孙冠超, 万军, 石卉. IgG相关食物不耐受与肠道免疫微环境相关性的研究进展[J/OL]. 中华胃肠内镜电子杂志, 2024, 11(03): 200-203.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?