切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2023, Vol. 13 ›› Issue (01) : 58 -62. doi: 10.3877/cma.j.issn.2095-1221.2023.01.008

综述

脂肪间充质干细胞治疗糖尿病及其慢性并发症的研究进展
郭庆1, 李冠琳1, 刘慧1, 魏炜1, 于洋1, 张纯1,()   
  1. 1. 100191 北京大学第三医院临床干细胞研究中心
  • 收稿日期:2022-05-07 出版日期:2023-02-01
  • 通信作者: 张纯
  • 基金资助:
    国家自然科学基金项目(82101780); 北京大学第三医院临床重点项目(BYSYZD2021031)

Advances of adipose-derived mesenchymal stem cells in the treatment of diabetes mellitus and its chronic complications

Qing Guo1, Guanlin Li1, Hui Liu1, Wei Wei1, Yang Yu1, Chun Zhang1,()   

  1. 1. Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
  • Received:2022-05-07 Published:2023-02-01
  • Corresponding author: Chun Zhang
引用本文:

郭庆, 李冠琳, 刘慧, 魏炜, 于洋, 张纯. 脂肪间充质干细胞治疗糖尿病及其慢性并发症的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 58-62.

Qing Guo, Guanlin Li, Hui Liu, Wei Wei, Yang Yu, Chun Zhang. Advances of adipose-derived mesenchymal stem cells in the treatment of diabetes mellitus and its chronic complications[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(01): 58-62.

糖尿病是常见的慢性病之一,持续的高血糖状态可以引起大血管系统和微血管系统的多种慢性并发症,是造成糖尿病患者死亡的主要原因。脂肪间充质干细胞(ADSCs)具有取材方便、分离简单和易于培养等特点,在治疗糖尿病及其慢性并发症方面表现出广阔应用潜力,现将近年来ADSCs在糖尿病及其慢性并发症治疗中取得的研究进展进行综述。

Diabetes mellitus is one of the most common and severe chronic diseases worldwide. Continuous hyperglycemia leads to various of chronic complications in the macrovascular and microvascular systems, which is the main cause of death in patients with diabetes. Adipose-derived mesenchymal stem cells (ADSCs) , which are easy to obtain, simple to isolate and easy to culture, have shown great potential in treating diabetes mellitus and its chronic complications. This paper reviews the research progress of ADSCs in treating diabetes mellitus and its chronic complications in recent years.

1
石炳毅,贾晓伟,李宁.中国移植后糖尿病诊疗技术规范(2019版)[J].器官移植, 2019, 10(1):1-9.
2
Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183:109119.
3
Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications[J]. Nat Rev Nephrol, 2020, 16(7):377-390.
4
Wan XX, Zhang DY, Khan MA, et al. Stem cell transplantation in the treatment of type 1 diabetes mellitus: from insulin replacement to beta-cell replacement[J]. Front Endocrinol (Lausanne), 2022, 13:859638.
5
Wang S, Lei B, Zhang E, et al. Targeted therapy for inflammatory diseases with mesenchymal stem cells and their derived exosomes: from basic to clinics[J]. Int J Nanomedicine, 2022, 17:1757-1781.
6
Shin L, Peterson DA. Impaired therapeutic capacity of autologous stem cells in a model of type 2 diabetes[J]. Stem Cells Transl Med, 2012, 1(2):125-135.
7
Policha A, Zhang P, Chang L, et al. Endothelial differentiation of diabetic adipose-derived stem cells[J]. J Surg Res, 2014, 192(2):656-663.
8
Bacakova L, Zarubova J, Travnickova M, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells-a review[J]. Biotechnol Adv, 2018, 36(4):1111-1126.
9
Jiao Z, Ma Y, Liu X, et al. Adipose-derived stem cell transplantation attenuates inflammation and promotes liver regeneration after ischemia-reperfusion and hemihepatectomy in swine[J]. Stem Cells Int, 2019, 2019:2489584.
10
Andjelkov K, Eremin II, Korac A. Different levels of EGF, VEGF, IL-6, MCP-1, MCP-3, IP-10, eotaxin and MIP-1alpha in the adipose-derived stem cell secretome in androgenetic alopecia[J]. Exp Dermatol, 2022, 31(6):936-942.
11
Zorena K, Michalska M, Kurpas M, et al. Environmental factors and the risk of developing type 1 diabetes-old disease and new data[J]. Biology (Basel), 2022, 11(4):608.
12
Omar SA, Abdul-Hafez A, Ibrahim S, et al. Stem-cell therapy for bronchopulmonary dysplasia (BPD) in newborns[J]. Cells, 2022, 11(8):1275.
13
Nojehdehi S, Soudi S, Hesampour A, et al. Immunomodulatory effects of mesenchymal stem cell-derived exosomes on experimental type-1 autoimmune diabetes[J]. J Cell Biochem, 2018, 119(11):9433-9443.
14
Gunawardena TNA, Rahman MT, Abdullah BJJ, et al. Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine[J]. J Tissue Eng Regen Med, 2019, 13(4):569-586.
15
Hashemi SM, Hassan ZM, Hossein-Khannazer N, et al. Investigating the route of administration and efficacy of adipose tissue-derived mesenchymal stem cells and conditioned medium in type 1 diabetic mice[J]. Inflammopharmacology, 2020, 28(2):585-601.
16
Mohammadi Ayenehdeh J, Niknam B, Rasouli S, et al. Immunomodulatory and protective effects of adipose tissue-derived mesenchymal stem cells in an allograft islet composite transplantation for experimental autoimmune type 1 diabetes[J]. Immunol Lett, 2017, 188:21-31.
17
Amer MG, Embaby AS, Karam RA, et al. Role of adipose tissue derived stem cells differentiated into insulin producing cells in the treatment of type I diabetes mellitus[J]. Gene, 2018, 654:87-94.
18
Dave SD, Vanikar AV, Trivedi HL, et al. Novel therapy for insulin-dependent diabetes mellitus: infusion of in vitro-generated insulin-secreting cells[J]. Clin Exp Med, 2015, 15(1):41-45.
19
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9(th) edition[J]. Diabetes Res Clin Pract, 2019, 157:107843.
20
Kaneto H, Kimura T, Shimoda M, et al. Molecular mechanism of pancreatic beta-cell failure in type 2 diabetes mellitus[J]. Biomedicines, 2022, 10(4):818.
21
Biondi G, Marrano N, Borrelli A, et al. Adipose tissue secretion pattern influences beta-cell wellness in the transition from obesity to type 2 diabetes[J]. Int J Mol Sci, 2022, 23(10):5522.
22
Deng Z, Xu H, Zhang J, et al. Infusion of adiposederived mesenchymal stem cells inhibits skeletal muscle mitsugumin 53 elevation and thereby alleviates insulin resistance in type 2 diabetic rats[J]. Mol Med Rep, 2018, 17(6):8466-8474.
23
Wang M, Song L, Strange C, et al. Therapeutic effects of adipose stem cells from diabetic mice for the treatment of type 2 diabetes[J]. Mol Ther, 2018, 26(8):1921-1930.
24
Elshemy MM, Asem M, Allemailem KS, et al. Antioxidative capacity of liver- and adipose-derived mesenchymal stem cell-conditioned media and their applicability in treatment of type 2 diabetic rats[J]. Oxid Med Cell Longev, 2021, 2021:8833467.
25
Xue B, Xiao X, Yu T, et al. Mesenchymal stem cells modified by FGF21 and GLP1 ameliorate lipid metabolism while reducing blood glucose in type 2 diabetic mice[J]. Stem Cell Res Ther, 2021, 12(1):133.doi: 10.1186/s13287-021-02205-z.
26
Sun LL, Liu TJ, Li L, et al. Transplantation of betatrophin-expressing adipose-derived mesenchymal stem cells induces beta-cell proliferation in diabetic mice[J]. Int J Mol Med, 2017, 39(4):936-948.
27
张新, 周玉红, 白云. 自体脂肪干细胞移植治疗2型糖尿病的安全性及有效性[J]. 中国医科大学学报, 2015, 44(12):1137-1141.
28
Nakamura K, Miyoshi T, Yoshida M, et al. Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus[J]. Int J Mol Sci, 2022, 23(7):3587. doi: 10.3390/ijms23073587.
29
Seferović PM, Petrie MC, Filippatos GS, et al. Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology[J]. Eur J Heart Fail, 2018, 20(5):853-872.
30
Yakupova EI, Maleev GV, Krivtsov AV, et al. Macrophage polarization in hypoxia and ischemia/reperfusion: Insights into the role of energetic metabolism[J]. Exp Biol Med, 2022, 247(11):958-971.
31
Zhao J, Chen XD, Yan ZZ, et al. Gut-derived exosomes induce liver injury after intestinal ischemia/reperfusion by promoting hepatic macrophage polarization[J]. Inflammation, 202245(6):2325-2338.
32
Jin L, Deng Z, Zhang J, et al. Mesenchymal stem cells promote type 2 macrophage polarization to ameliorate the myocardial injury caused by diabetic cardiomyopathy[J]. J Transl Med, 2019, 17(1):251.doi: 10.1186/s12967-019-1999-8.
33
Hu C, Li L. The application of resveratrol to mesenchymal stromal cell-based regenerative medicine[J]. Stem Cell Res Ther, 2019, 10(1):307.doi: 10.1186/s13287-019-1412-9.
34
Wu M, Ma L, Xue L, et al. Resveratrol alleviates chemotherapy-induced oogonial stem cell apoptosis and ovarian aging in mice[J]. Aging (Albany NY), 2019, 11(3):1030-1044.
35
Chen TS, Chuang SY, Shen CY, et al. Antioxidant Sirt1/Akt axis expression in resveratrol pretreated adipose-derived stem cells increases regenerative capability in a rat model with cardiomyopathy induced by diabetes mellitus[J]. J Cell Physiol, 2021, 236(6):4290-4302.
36
Fujita Y, Haneda M. Clinical practice of diabetic foot, nephropathy, and retinopathy in Japan: cross-sectional study using local and nationwide questionnaire surveys[J]. Diabetol Int, 2021, 13(3):493-502.
37
Ludwig PE, Freeman SC, Janot AC. Novel stem cell and gene therapy in diabetic retinopathy, age related macular degeneration, and retinitis pigmentosa[J]. Int J Retina Vitreous, 2019, 5:7. doi: 10.1186/s40942-019-0158-y.
38
Elshaer SL, Evans W, Pentecost M, et al. Adipose stem cells and their paracrine factors are therapeutic for early retinal complications of diabetes in the Ins2(Akita) mouse[J]. Stem Cell Res Ther, 2018, 9(1):322. doi: 10.1186/s13287-018-1059-y.
39
Gu C, Zhang H, Gao Y. Adipose mesenchymal stem cells-secreted extracellular vesicles containing microRNA-192 delays diabetic retinopathy by targeting ITGA1[J]. J Cell Physiol, 2021, 236(7):5036-5051.
40
Jere SW, Houreld NN. Regulatory processes of the canonical Wnt/beta-catenin pathway and photobiomodulation in diabetic wound repair[J]. Int J Mol Sci, 2022, 23(8):4210. doi: 10.3390/ijms23084210.
41
Sun Y, Song L, Zhang Y, et al. Adipose stem cells from type 2 diabetic mice exhibit therapeutic potential in wound healing[J]. Stem Cell Res Ther, 2020, 11(1):298.doi: 10.1186/s13287-020-01817-1.
42
De Gregorio C, Contador D, Díaz D, et al. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice[J]. Stem Cell Res Ther, 2020, 11(1):168.doi: 10.1186/s13287-020-01680-0.
43
Chen L, Qu J, Mei Q, et al. Small extracellular vesicles from menstrual blood-derived mesenchymal stem cells (MenSCs) as a novel therapeutic impetus in regenerative medicine[J]. Stem Cell Res Ther, 2021, 12(1):433. doi: 10.1186/s13287-021-02511-6.
44
Pomatto M, Gai C, Negro F, et al. Differential therapeutic effect of extracellular vesicles derived by bone marrow and adipose mesenchymal stem cells on wound healing of diabetic ulcers and correlation to their cargoes[J]. Int J Mol Sci, 2021, 22(8):3851. doi: 10.3390/ijms22083851.
45
Xu H, Zhao B, Zhong W, et al. Identification of miRNA signature associated with erectile dysfunction in type 2 diabetes mellitus by support vector machine-recursive feature elimination[J]. Front Genet, 2021, 12:762136.doi: 10.3389/fgene.2021.762136.
46
Pakpahan C, Ibrahim R, William W, et al. Stem cell therapy and diabetic erectile dysfunction: A critical review[J]. World J Stem Cells, 2021, 13(10):1549-1563.
47
Zhu LL, Huang X, Yu W, et al. Transplantation of adipose tissue-derived stem cell-derived exosomes ameliorates erectile function in diabetic rats[J]. Andrologia, 2018, 50(2).doi: 10.1111/and.12871.
48
Shan HT, Zhang HB, Chen WT, et al. Combination of low-energy shock-wave therapy and bone marrow mesenchymal stem cell transplantation to improve the erectile function of diabetic rats[J]. Asian J Androl, 2017, 19(1):26-33.
49
Chen S, Zhu J, Wang M, et al. Comparison of the therapeutic effects of adipose-derived and bone marrow mesenchymal stem cells on erectile dysfunction in diabetic rats[J]. Int J Mol Med, 2019, 44(3):1006-1014.
50
Zhang HB, Chen FZ, He SH, et al. In vivo tracking on longer retention of transplanted myocardin gene-modified adipose-derived stem cells to improve erectile dysfunction in diabetic rats[J]. Stem Cell Res Ther, 2019, 10(1):208. doi: 10.1186/s13287-019-1325-7.
51
Zhang Y, Yang J, Zhuan L, et al. Transplantation of adipose-derived stem cells overexpressing inducible nitric oxide synthase ameliorates diabetes mellitus-induced erectile dysfunction in rats[J]. Peerj, 2019, 7:e7507. doi: 10.7717/peerj.7507.
52
Quaade ML, Dhumale P, Steffensen SGC, et al. Adipose-derived stem cells from type 2 diabetic rats retain positive effects in a rat model of erectile dysfunction[J]. Int J Mol Sci, 2022, 23(3):1692. doi: 10.3390/ijms23031692.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[3] 王洁, 丁泊文, 尹健. 糖尿病性乳腺病52例临床分析[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 285-289.
[4] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[5] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[6] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[7] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[8] 鲍亚慧, 曹志斌, 王健楠, 别瑶, 孙晓东, 惠宗光. 应用羧甲基纤维素钠银敷料联合封闭负压吸引治疗糖尿病足溃疡的疗效[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 326-330.
[9] 叶弘, 吕婧喆, 钟良军. 白藜芦醇治疗牙周炎和糖尿病的新进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 376-380.
[10] 李琛, 张惟佳, 潘亚萍. 牙周炎与系统性疾病之间关系的应用思考:2022年EFP和WONCA欧洲分部联合研讨会共识报告的解读及启示[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 322-327.
[11] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[12] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[13] 张政赢, 鞠阳, 刘晓宁. 二甲双胍对2型糖尿病患者大肠腺瘤术后复发的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 485-488.
[14] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[15] 谢国晓, 赵凌霞, 薛雪花. 慢性病管理模式在糖尿病社区管理中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 587-590.
阅读次数
全文


摘要