切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2023, Vol. 13 ›› Issue (01) : 58 -62. doi: 10.3877/cma.j.issn.2095-1221.2023.01.008

综述

脂肪间充质干细胞治疗糖尿病及其慢性并发症的研究进展
郭庆1, 李冠琳1, 刘慧1, 魏炜1, 于洋1, 张纯1,()   
  1. 1. 100191 北京大学第三医院临床干细胞研究中心
  • 收稿日期:2022-05-07 出版日期:2023-02-01
  • 通信作者: 张纯
  • 基金资助:
    国家自然科学基金项目(82101780); 北京大学第三医院临床重点项目(BYSYZD2021031)

Advances of adipose-derived mesenchymal stem cells in the treatment of diabetes mellitus and its chronic complications

Qing Guo1, Guanlin Li1, Hui Liu1, Wei Wei1, Yang Yu1, Chun Zhang1,()   

  1. 1. Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
  • Received:2022-05-07 Published:2023-02-01
  • Corresponding author: Chun Zhang
引用本文:

郭庆, 李冠琳, 刘慧, 魏炜, 于洋, 张纯. 脂肪间充质干细胞治疗糖尿病及其慢性并发症的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 58-62.

Qing Guo, Guanlin Li, Hui Liu, Wei Wei, Yang Yu, Chun Zhang. Advances of adipose-derived mesenchymal stem cells in the treatment of diabetes mellitus and its chronic complications[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(01): 58-62.

糖尿病是常见的慢性病之一,持续的高血糖状态可以引起大血管系统和微血管系统的多种慢性并发症,是造成糖尿病患者死亡的主要原因。脂肪间充质干细胞(ADSCs)具有取材方便、分离简单和易于培养等特点,在治疗糖尿病及其慢性并发症方面表现出广阔应用潜力,现将近年来ADSCs在糖尿病及其慢性并发症治疗中取得的研究进展进行综述。

Diabetes mellitus is one of the most common and severe chronic diseases worldwide. Continuous hyperglycemia leads to various of chronic complications in the macrovascular and microvascular systems, which is the main cause of death in patients with diabetes. Adipose-derived mesenchymal stem cells (ADSCs) , which are easy to obtain, simple to isolate and easy to culture, have shown great potential in treating diabetes mellitus and its chronic complications. This paper reviews the research progress of ADSCs in treating diabetes mellitus and its chronic complications in recent years.

1
石炳毅,贾晓伟,李宁.中国移植后糖尿病诊疗技术规范(2019版)[J].器官移植, 2019, 10(1):1-9.
2
Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183:109119.
3
Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications[J]. Nat Rev Nephrol, 2020, 16(7):377-390.
4
Wan XX, Zhang DY, Khan MA, et al. Stem cell transplantation in the treatment of type 1 diabetes mellitus: from insulin replacement to beta-cell replacement[J]. Front Endocrinol (Lausanne), 2022, 13:859638.
5
Wang S, Lei B, Zhang E, et al. Targeted therapy for inflammatory diseases with mesenchymal stem cells and their derived exosomes: from basic to clinics[J]. Int J Nanomedicine, 2022, 17:1757-1781.
6
Shin L, Peterson DA. Impaired therapeutic capacity of autologous stem cells in a model of type 2 diabetes[J]. Stem Cells Transl Med, 2012, 1(2):125-135.
7
Policha A, Zhang P, Chang L, et al. Endothelial differentiation of diabetic adipose-derived stem cells[J]. J Surg Res, 2014, 192(2):656-663.
8
Bacakova L, Zarubova J, Travnickova M, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells-a review[J]. Biotechnol Adv, 2018, 36(4):1111-1126.
9
Jiao Z, Ma Y, Liu X, et al. Adipose-derived stem cell transplantation attenuates inflammation and promotes liver regeneration after ischemia-reperfusion and hemihepatectomy in swine[J]. Stem Cells Int, 2019, 2019:2489584.
10
Andjelkov K, Eremin II, Korac A. Different levels of EGF, VEGF, IL-6, MCP-1, MCP-3, IP-10, eotaxin and MIP-1alpha in the adipose-derived stem cell secretome in androgenetic alopecia[J]. Exp Dermatol, 2022, 31(6):936-942.
11
Zorena K, Michalska M, Kurpas M, et al. Environmental factors and the risk of developing type 1 diabetes-old disease and new data[J]. Biology (Basel), 2022, 11(4):608.
12
Omar SA, Abdul-Hafez A, Ibrahim S, et al. Stem-cell therapy for bronchopulmonary dysplasia (BPD) in newborns[J]. Cells, 2022, 11(8):1275.
13
Nojehdehi S, Soudi S, Hesampour A, et al. Immunomodulatory effects of mesenchymal stem cell-derived exosomes on experimental type-1 autoimmune diabetes[J]. J Cell Biochem, 2018, 119(11):9433-9443.
14
Gunawardena TNA, Rahman MT, Abdullah BJJ, et al. Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine[J]. J Tissue Eng Regen Med, 2019, 13(4):569-586.
15
Hashemi SM, Hassan ZM, Hossein-Khannazer N, et al. Investigating the route of administration and efficacy of adipose tissue-derived mesenchymal stem cells and conditioned medium in type 1 diabetic mice[J]. Inflammopharmacology, 2020, 28(2):585-601.
16
Mohammadi Ayenehdeh J, Niknam B, Rasouli S, et al. Immunomodulatory and protective effects of adipose tissue-derived mesenchymal stem cells in an allograft islet composite transplantation for experimental autoimmune type 1 diabetes[J]. Immunol Lett, 2017, 188:21-31.
17
Amer MG, Embaby AS, Karam RA, et al. Role of adipose tissue derived stem cells differentiated into insulin producing cells in the treatment of type I diabetes mellitus[J]. Gene, 2018, 654:87-94.
18
Dave SD, Vanikar AV, Trivedi HL, et al. Novel therapy for insulin-dependent diabetes mellitus: infusion of in vitro-generated insulin-secreting cells[J]. Clin Exp Med, 2015, 15(1):41-45.
19
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9(th) edition[J]. Diabetes Res Clin Pract, 2019, 157:107843.
20
Kaneto H, Kimura T, Shimoda M, et al. Molecular mechanism of pancreatic beta-cell failure in type 2 diabetes mellitus[J]. Biomedicines, 2022, 10(4):818.
21
Biondi G, Marrano N, Borrelli A, et al. Adipose tissue secretion pattern influences beta-cell wellness in the transition from obesity to type 2 diabetes[J]. Int J Mol Sci, 2022, 23(10):5522.
22
Deng Z, Xu H, Zhang J, et al. Infusion of adiposederived mesenchymal stem cells inhibits skeletal muscle mitsugumin 53 elevation and thereby alleviates insulin resistance in type 2 diabetic rats[J]. Mol Med Rep, 2018, 17(6):8466-8474.
23
Wang M, Song L, Strange C, et al. Therapeutic effects of adipose stem cells from diabetic mice for the treatment of type 2 diabetes[J]. Mol Ther, 2018, 26(8):1921-1930.
24
Elshemy MM, Asem M, Allemailem KS, et al. Antioxidative capacity of liver- and adipose-derived mesenchymal stem cell-conditioned media and their applicability in treatment of type 2 diabetic rats[J]. Oxid Med Cell Longev, 2021, 2021:8833467.
25
Xue B, Xiao X, Yu T, et al. Mesenchymal stem cells modified by FGF21 and GLP1 ameliorate lipid metabolism while reducing blood glucose in type 2 diabetic mice[J]. Stem Cell Res Ther, 2021, 12(1):133.doi: 10.1186/s13287-021-02205-z.
26
Sun LL, Liu TJ, Li L, et al. Transplantation of betatrophin-expressing adipose-derived mesenchymal stem cells induces beta-cell proliferation in diabetic mice[J]. Int J Mol Med, 2017, 39(4):936-948.
27
张新, 周玉红, 白云. 自体脂肪干细胞移植治疗2型糖尿病的安全性及有效性[J]. 中国医科大学学报, 2015, 44(12):1137-1141.
28
Nakamura K, Miyoshi T, Yoshida M, et al. Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus[J]. Int J Mol Sci, 2022, 23(7):3587. doi: 10.3390/ijms23073587.
29
Seferović PM, Petrie MC, Filippatos GS, et al. Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology[J]. Eur J Heart Fail, 2018, 20(5):853-872.
30
Yakupova EI, Maleev GV, Krivtsov AV, et al. Macrophage polarization in hypoxia and ischemia/reperfusion: Insights into the role of energetic metabolism[J]. Exp Biol Med, 2022, 247(11):958-971.
31
Zhao J, Chen XD, Yan ZZ, et al. Gut-derived exosomes induce liver injury after intestinal ischemia/reperfusion by promoting hepatic macrophage polarization[J]. Inflammation, 202245(6):2325-2338.
32
Jin L, Deng Z, Zhang J, et al. Mesenchymal stem cells promote type 2 macrophage polarization to ameliorate the myocardial injury caused by diabetic cardiomyopathy[J]. J Transl Med, 2019, 17(1):251.doi: 10.1186/s12967-019-1999-8.
33
Hu C, Li L. The application of resveratrol to mesenchymal stromal cell-based regenerative medicine[J]. Stem Cell Res Ther, 2019, 10(1):307.doi: 10.1186/s13287-019-1412-9.
34
Wu M, Ma L, Xue L, et al. Resveratrol alleviates chemotherapy-induced oogonial stem cell apoptosis and ovarian aging in mice[J]. Aging (Albany NY), 2019, 11(3):1030-1044.
35
Chen TS, Chuang SY, Shen CY, et al. Antioxidant Sirt1/Akt axis expression in resveratrol pretreated adipose-derived stem cells increases regenerative capability in a rat model with cardiomyopathy induced by diabetes mellitus[J]. J Cell Physiol, 2021, 236(6):4290-4302.
36
Fujita Y, Haneda M. Clinical practice of diabetic foot, nephropathy, and retinopathy in Japan: cross-sectional study using local and nationwide questionnaire surveys[J]. Diabetol Int, 2021, 13(3):493-502.
37
Ludwig PE, Freeman SC, Janot AC. Novel stem cell and gene therapy in diabetic retinopathy, age related macular degeneration, and retinitis pigmentosa[J]. Int J Retina Vitreous, 2019, 5:7. doi: 10.1186/s40942-019-0158-y.
38
Elshaer SL, Evans W, Pentecost M, et al. Adipose stem cells and their paracrine factors are therapeutic for early retinal complications of diabetes in the Ins2(Akita) mouse[J]. Stem Cell Res Ther, 2018, 9(1):322. doi: 10.1186/s13287-018-1059-y.
39
Gu C, Zhang H, Gao Y. Adipose mesenchymal stem cells-secreted extracellular vesicles containing microRNA-192 delays diabetic retinopathy by targeting ITGA1[J]. J Cell Physiol, 2021, 236(7):5036-5051.
40
Jere SW, Houreld NN. Regulatory processes of the canonical Wnt/beta-catenin pathway and photobiomodulation in diabetic wound repair[J]. Int J Mol Sci, 2022, 23(8):4210. doi: 10.3390/ijms23084210.
41
Sun Y, Song L, Zhang Y, et al. Adipose stem cells from type 2 diabetic mice exhibit therapeutic potential in wound healing[J]. Stem Cell Res Ther, 2020, 11(1):298.doi: 10.1186/s13287-020-01817-1.
42
De Gregorio C, Contador D, Díaz D, et al. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice[J]. Stem Cell Res Ther, 2020, 11(1):168.doi: 10.1186/s13287-020-01680-0.
43
Chen L, Qu J, Mei Q, et al. Small extracellular vesicles from menstrual blood-derived mesenchymal stem cells (MenSCs) as a novel therapeutic impetus in regenerative medicine[J]. Stem Cell Res Ther, 2021, 12(1):433. doi: 10.1186/s13287-021-02511-6.
44
Pomatto M, Gai C, Negro F, et al. Differential therapeutic effect of extracellular vesicles derived by bone marrow and adipose mesenchymal stem cells on wound healing of diabetic ulcers and correlation to their cargoes[J]. Int J Mol Sci, 2021, 22(8):3851. doi: 10.3390/ijms22083851.
45
Xu H, Zhao B, Zhong W, et al. Identification of miRNA signature associated with erectile dysfunction in type 2 diabetes mellitus by support vector machine-recursive feature elimination[J]. Front Genet, 2021, 12:762136.doi: 10.3389/fgene.2021.762136.
46
Pakpahan C, Ibrahim R, William W, et al. Stem cell therapy and diabetic erectile dysfunction: A critical review[J]. World J Stem Cells, 2021, 13(10):1549-1563.
47
Zhu LL, Huang X, Yu W, et al. Transplantation of adipose tissue-derived stem cell-derived exosomes ameliorates erectile function in diabetic rats[J]. Andrologia, 2018, 50(2).doi: 10.1111/and.12871.
48
Shan HT, Zhang HB, Chen WT, et al. Combination of low-energy shock-wave therapy and bone marrow mesenchymal stem cell transplantation to improve the erectile function of diabetic rats[J]. Asian J Androl, 2017, 19(1):26-33.
49
Chen S, Zhu J, Wang M, et al. Comparison of the therapeutic effects of adipose-derived and bone marrow mesenchymal stem cells on erectile dysfunction in diabetic rats[J]. Int J Mol Med, 2019, 44(3):1006-1014.
50
Zhang HB, Chen FZ, He SH, et al. In vivo tracking on longer retention of transplanted myocardin gene-modified adipose-derived stem cells to improve erectile dysfunction in diabetic rats[J]. Stem Cell Res Ther, 2019, 10(1):208. doi: 10.1186/s13287-019-1325-7.
51
Zhang Y, Yang J, Zhuan L, et al. Transplantation of adipose-derived stem cells overexpressing inducible nitric oxide synthase ameliorates diabetes mellitus-induced erectile dysfunction in rats[J]. Peerj, 2019, 7:e7507. doi: 10.7717/peerj.7507.
52
Quaade ML, Dhumale P, Steffensen SGC, et al. Adipose-derived stem cells from type 2 diabetic rats retain positive effects in a rat model of erectile dysfunction[J]. Int J Mol Sci, 2022, 23(3):1692. doi: 10.3390/ijms23031692.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 王杰, 袁泉, 王玥琦, 乔佳君, 谭春丽, 夏仲元, 刘守尧. 溃疡油在糖尿病足溃疡治疗中的应用效果及安全性观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 480-484.
[3] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[4] 姜珊, 李湘燕, 田硕涵, 温冰, 何睿, 齐心. 采用优化抗感染治疗模式改善糖尿病足感染预后的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 398-403.
[5] 别瑶, 曹志斌, 辛静, 王健楠, 惠宗光. 应用基质血管成分细胞治疗糖尿病足溃疡的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 453-456.
[6] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[7] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[8] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[9] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[10] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[11] 程柏凯, 杨光. 高胰岛素-正葡萄糖钳夹技术评估慢性肾脏病患者胰岛素抵抗的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 334-339.
[12] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[13] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
[14] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
[15] 李玺, 蔡芸莹, 张永红, 苏恒. 假性软骨发育不全合并1型糖尿病一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 518-520.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?