切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (02) : 112 -119. doi: 10.3877/cma.j.issn.2095-1221.2025.02.007

综述

负载干细胞外泌体水凝胶治疗糖尿病足溃疡的研究进展
梁瑶瑶1, 邬绿莹1, 陈津1,()   
  1. 1. 570311 海口,海南医科大学第二附属医院临床医学研究所
  • 收稿日期:2025-01-21 出版日期:2025-04-01
  • 通信作者: 陈津
  • 基金资助:
    国家自然科学基金 (82260161)海南省自然科学基金 (822MS179)海南省重点研发项目(ZDYF2024SHFZ061)

Advances in hydrogel loaded with stem cell derived-exosomes for the treatment of diabetic foot ulcers

Yaoyao Liang1, Lvying Wu1, Jin Chen1,()   

  1. 1. Institute of Clinical Medicine, the Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
  • Received:2025-01-21 Published:2025-04-01
  • Corresponding author: Jin Chen
引用本文:

梁瑶瑶, 邬绿莹, 陈津. 负载干细胞外泌体水凝胶治疗糖尿病足溃疡的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 112-119.

Yaoyao Liang, Lvying Wu, Jin Chen. Advances in hydrogel loaded with stem cell derived-exosomes for the treatment of diabetic foot ulcers[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(02): 112-119.

糖尿病足溃疡 (DFUs)是糖尿病患者常见的并发症之一,其治疗难度大、复发率高,一直是医学界关注的重点。近年来,随着再生医学的发展,间充质干细胞外泌体因其独特的生物学特性和治疗潜力备受关注。作为一种新型的生物活性分子,干细胞外泌体具有促进细胞增殖、分化、迁移和血管生成等多种生物功能,为糖尿病创面的治疗提供新的思路和方法。然而,外泌体在体内的稳定性和传递效率有限,限制其在临床治疗中的应用。水凝胶作为一种生物相容性好、可降解的材料,能够为干细胞外泌体提供一个稳定的微环境,并促进其向伤口部位释放。通过优化水凝胶的制备工艺和改性方法,可以进一步提高其载药量和稳定性,从而增强治疗效果。同时,水凝胶的黏附性和可塑性也使其能够紧密贴合伤口表面,减少感染风险,加速伤口愈合过程。本文综述了负载干细胞外泌体水凝胶在DFUs 治疗中的研究进展,包括DFUs 难以愈合的机制、干细胞外泌体的功能、水凝胶的特点及功能,以及负载外泌体水凝胶促进DFUs愈合的研究进展。

Diabetic foot ulcers( DFUs) are common complications in patients with diabetes,which has been a focus of medical attention due to their difficult treatment and high recurrence rates.In recent years, with the development of regenerative medicine, mesenchymal stem cell- derived exosomes(MSC-Exosomes) have gained significant attention for their unique biological properties and therapeutic potential.As a novel type of bioactive molecule, they possess various biological functions such as promoting cell proliferation, differentiation, migration, and angiogenesis, providing new ideas and methods for the treatment of diabetic wounds.However, the limited stability and delivery efficiency of exosomes in vivo restrict their clinical application.Hydrogels, a kind of biocompatible and biodegradable material, can provide a stable microenvironment for stem cell exosomes and facilitate their release to the wound site.Further optimized the preparation process and modification methods of hydrogels could enhance their drug loading capacity and stability, boosting their therapeutic efficacy.Additionally, the adhesiveness and plasticity properties of hydrogels allow them to closely adhere to the wound surface, reducing the risk of infection and accelerating the wound healing process.This article reviews the research progress of hydrogel loaded with stem cell exosomes in the treatment of DFUs, including the mechanisms underlying the difficulty of healing DFUs, the functions of stem cell-derived exosomes, the characteristics and functions of hydrogels, as well as the reserch progress on exosome-loaded hydrogels for promoting DFUs healing.

图1 糖尿病足溃疡的机制 注:IL-6 为白细胞介素-6;IL-1 为白细胞介素-1;TNF 为肿瘤坏死因子
图2 水凝胶的分类
表1 水凝胶治疗糖尿病足溃疡的临床试验
表2 负载不同来源外泌体的水凝胶在糠尿病足溃疡愈合中的研究
1
Armstrong DG, Boulton AJM, Bus S A.Diabetic foot ulcers and their recurrence [J].N Engl J Med, 2017, 376(24):2367-2375.
2
Jiang P, Li Q, Luo Y, et al.Current status and progress in research on dressing management for diabetic foot ulcer[J].Front Endocrinol(Lausanne), 2023, 14:1221705.doi: 10.3389/fendo.2023.1221705.
3
Patel M, Patel V, Shah U, et al.Molecular pathology and therapeutics of the diabetic foot ulcer; comprehensive reviews[J].Arch Physiol Biochem, 2024, 130(5): 591-598.
4
Armstrong DG, Tan TW, Boulton AJM, et al.Diabetic foot ulcers: a review [J].Jama, 2023, 330(1): 62-75.
5
Stone A, Donohue CM.Diabetic foot ulcers in geriatric patients[J].Clin Geriatr Med, 2024, 40(3): 437-447.
6
Safari B, Aghazadeh M, Davaran S, et al.Exosome-loaded hydrogels:A new cell-free therapeutic approach for skin regeneration[J].Eur J Pharm Biopharm, 2022, 171: 50-59.
7
Han QF, Li WJ, Hu KS, et al.Exosome biogenesis: machinery,regulation, and therapeutic implications in cancer[J].Mol Cancer,2022, 21(1):207.doi: 10.1186/s12943-022-01671-0.
8
孙海燕, 周士燕, 张杉杉, 等.间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展 [J/OL].中华细胞与干细胞杂志(电子版), 2024, 14(3):186-190.
9
Zhao G, Wang Y, Xing S, et al.Exosome-based anticancer vaccines:From Bench to bedside[J].Cancer Lett, 2024, 595:216989.doi:10.1016/j.canlet.2024.216989.
10
Zhu F, Wang T, Wang G, et al.The exosome-mediated bone regeneration: an advanced horizon toward the isolation, engineering,carrying modalities, and mechanisms[J].Adv Healthc Mater, 2024,13(19):e2400293.doi: 10.1002/adhm.202400293.
11
Kalluri R, Lebleu VS.The biology, function, and biomedical applications of exosomes[J].Science, 2020, 367(6478):eaau6977.doi:10.1126/science.aau6977.
12
李睿, 王殿相, 梁兆伟, 等.间充质干细胞来源的外泌体在胰岛移植中的作用研究现状及应用前景 [J].器官移植, 2025, 16 (1): 163-168.
13
Khazaei F, Rezakhani L, Alizadeh M, et al.Exosomes and exosomeloaded scaffolds:characterization and application in modern regenerative medicine[J].Tissue Cell, 2023, 80:102007.doi: 10.1016/j.tice.2022.102007.
14
Hu N, Cai Z, Jiang X, et al.Hypoxia-pretreated ADSC-derived exosome-embedded hydrogels promote angiogenesis and accelerate diabetic wound healing [J].Acta Biomater, 2023, 157: 175-186.
15
Zhu D, Hu Y, Kong X, et al.Enhanced burn wound healing by controlled-release 3D ADMSC-derived exosome-loaded hyaluronan hydrogel[J].Regen Biomater, 2024, 11:rbae035.doi: 10.1093/rb/rbae035.
16
Wu Q, Guo Y, Li H, et al.Recombinant human collagen I/carboxymethyl chitosan hydrogel loaded with long-term released hUCMSCs derived exosomes promotes skin wound repair[J].Int J Biol Macromol, 2024,265(Pt 1):130843.doi: 10.1016/j.ijbiomac.2024.130843.
17
Lv Y, Li L, Zhang J, et al.Visible-light cross-linkable multifunctional hydrogels loaded with exosomes facilitate full-thickness skin defect wound healing through participating in the entire healing process[J].ACS Appl Mater Interfaces, 2024, 16(20): 25923-25937.
18
Teng X, Liu T, Zhao G, et al.A novel exosome-based multifunctional nanocomposite platform driven by photothermal-controlled release system for repair of skin injury [J].J Control Release, 2024, 371: 258-272.
19
Wu D, Tao S, Zhu L, et al.Chitosan hydrogel dressing loaded with adipose mesenchymal stem cell-derived exosomes promotes skin full- thickness wound repair [J].ACS Appl Bio Mater, 2024, 7(2): 1125-1134.
20
Yuan N, Shao K, Huang S, et al.Chitosan, alginate, hyaluronic acid and other novel multifunctional hydrogel dressings for wound healing:A review[J].Int J Biol Macromol, 2023, 240:124321.doi: 10.1016/j.ijbiomac.2023.124321.
21
Leijten J, Seo J, Yue K, et al.Spatially and temporally controlled hydrogels for tissue engineering [J].Mater Sci Eng R Rep, 2017, 119:1-35.
22
Wang D, Yang X, Liu Q, et al.Enzymatically cross-linked hydrogels based on a linear poly(ethylene glycol) analogue for controlled protein release and 3D cell culture [J].J Mater Chem B, 2018, 6(38): 6067-6079.
23
Jung S, Abel JH, Starger JL, et al.Porosity-tuned chitosanpolyacrylamide hydrogel microspheres for improved protein conjugation [J].Biomacromolecules, 2016, 17(7):2427-2436.
24
Voza FA, Huerta CT, Le N, et al.Fibroblasts in diabetic foot ulcers[J].Int J Mol Sci, 2024, 25(4):2172.doi: 10.3390/ijms25042172.
25
Liu Y, Liu Y, Deng J, et al.Fibroblast growth factor in diabetic foot ulcer: progress and therapeutic prospects[J].Front Endocrinol(Lausanne), 2021, 12:744868.doi: 10.3389/fendo.2021.744868.
26
Noor S, Khan RU, Ahmad J.Understanding diabetic foot infection and its management [J].Diabetes Metab Syndr, 2017, 11(2):149-156.
27
O'brien TD.Impaired dermal microvascular reactivity and implications for diabetic wound formation and healing: an evidence review[J].J Wound Care, 2020, 29(Sup9):S21-s28.
28
Xiong Y, Feng Q, Lu L, et al.Immunomodulatory hydrogels: advanced regenerative tools for diabetic foot ulcer[J].Advanced Functional Materials, 2023, 33(10).
29
Jiang T, Liu S, Wu Z, et al.ADSC-exo@MMP-PEG smart hydrogel promotes diabetic wound healing by optimizing cellular functions and relieving oxidative stress[J].Mater Today Bio, 2022, 16:100365.doi:10.1016/j.mtbio.2022.100365.
30
Lu M, Huang Y.Bioinspired exosome-like therapeutics and delivery nanoplatforms[J].Biomaterials, 2020, 242:119925.doi: 10.1016/j.biomaterials.2020.119925.
31
He X, Dong Z, Cao Y, et al.MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing[J].Stem Cells Int,2019, 2019:7132708.doi: 10.1155/2019/7132708.
32
Qiu H, Liu S, Wu K, et al.Prospective application of exosomes derived from adipose-derived stem cells in skin wound healing: a review[J].J Cosmet Dermatol, 2020, 19(3): 574-581.
33
Zhang S, Chuah SJ, Lai RC, et al.MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity[J].Biomaterials, 2018, 156: 16-27.
34
Ma T, Fu B, Yang X, et al.Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing[J].J Cell Biochem, 2019, 120(6):10847-10854.
35
Zhou Y, Zhang XL, Lu ST, et al.Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration[J].Stem Cell Res Ther, 2022,13(1):407.doi: 10.1186/s13287-022-02980-3.
36
Jiang L, Zhang Y, Liu T, et al.Exosomes derived from TSG-6 modified mesenchymal stromal cells attenuate scar formation during wound healing[J].Biochimie, 2020, 177:40-49.
37
Shi Y, Wang S, Wang K, et al.Relieving Macrophage dysfunction by inhibiting SREBP2 activity: a hypoxic mesenchymal stem cells-derived exosomes loaded multifunctional hydrogel for accelerated diabetic wound healing[J].Small, 2024, 20(25):e2309276.doi: 10.1002/smll.202309276.
38
Nilforoushzadeh MA, Khodadadi Yazdi M, Baradaran Ghavami S,et al.Mesenchymal stem cell spheroids embedded in an injectable thermosensitive hydrogel: an in situ drug formation platform for accelerated wound healing[J].ACS Biomater Sci Eng, 2020, 6(9):5096-5109.
39
Xiong Y, Mi BB, Lin Z, et al.The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity[J].Mil Med Res, 2022, 9(1):65.doi: 10.1186/s40779-022-00426-8.
40
Moura LI, Dias AM, Carvalho E, et al.Recent advances on the development of wound dressings for diabetic foot ulcer treatment--a review[J].Acta Biomater, 2013, 9(7): 7093-7114.
41
Fuchs S, Ernst AU, Wang LH, et al.Hydrogels in emerging technologies for type 1 diabetes[J].Chem Rev, 2021, 121(18):11458-11526.
42
Wang P, Cai F, Li Y, et al.Emerging trends in the application of hydrogel-based biomaterials for enhanced wound healing: a literature review[J].Int J Biol Macromol, 2024, 261(Pt 1):129300.doi: 10.1016/j.ijbiomac.2024.129300.
43
Zhao L, Li L, Yang G, et al.Aptamer functionalized DNA hydrogels:Design, applications and kinetics[J].Biosens Bioelectron, 2021,194:113597.doi: 10.1016/j.bios.2021.113597.
44
Jacob S, Nair AB, Shah J, et al.Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management[J].Pharmaceutics, 2021, 13(3):357.doi: 10.3390/pharmaceutics13030357.
45
Wang Z, Li W, Gou L, et al.Biodegradable and antioxidant DNA hydrogel as a cytokine delivery system for diabetic wound healing[J].Adv Healthc Mater, 2022, 11(21):e2200782.doi: 10.1002/adhm.202200782.
46
Zhang X, Feng J, Feng W, et al.Glycosaminoglycan-based hydrogel delivery system regulates the wound microenvironment to rescue chronic wound healing[J].ACS Appl Mater Interfaces, 2022, 14(28):31737-31750.
47
Shang S, Zhuang K, Chen J, et al.A bioactive composite hydrogel dressing that promotes healing of both acute and chronic diabetic skin wounds[J].Bioact Mater, 2024, 34: 298-310.
48
Zhang Y, Li M, Wang Y, et al.Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission[J].Bioact Mater, 2023, 26: 323-336.
49
Song Y, You Y, Xu X, et al.Adipose-derived mesenchymal stem cell-derived exosomes biopotentiated extracellular matrix hydrogels accelerate diabetic wound healing and skin regeneration[J].Adv Sci(Weinh), 2023, 10(30):e2304023.doi: 10.1002/advs.202304023.
50
Han X, Saengow C, Ju L, et al.Exosome-coated oxygen nanobubble- laden hydrogel augments intracellular delivery of exosomes for enhanced wound healing[J].Nat Commun, 2024,15(1):3435.doi: 10.1038/s41467-024-47696-5.
51
Wang C, Wang M, Xu T, et al.Erratum:engineering bioactive self- healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration:erratum [J].Theranostics, 2021, 11(20):10174-10175.
52
Yang J, Chen Z, Pan D, et al.Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration [J].Int J Nanomedicine, 2020, 15:5911-5926.
53
Li X, Qu S, Ouyang Q, et al.A multifunctional composite nanoparticle with antibacterial activities, anti-inflammatory, and angiogenesis for diabetic wound healing[J].Int J Biol Macromol, 2024, 260(Pt 2):129531.doi: 10.1016/j.ijbiomac.2024.129531.
54
Yue Y, Liu Y, Lin Y, et al.A carboxymethyl chitosan/oxidized hyaluronic acid composite hydrogel dressing loading with stem cell exosome for chronic inflammation wounds healing[J].Int J Biol Macromol, 2024, 257(Pt 1):128534.doi: 10.1016/j.ijbiomac.2023.128534.
55
Yuan W, Huang C, Deng W, et al.Hyaluronic acid methacryloyl/chitosan methacryloyl/3-methacrylamidophenylboronic acid multifunctional hydrogel loading exosome for diabetic wound healing[J].Int J Biol Macromol, 2024, 280(Pt 3):135562.doi: 10.1016/j.ijbiomac.2024.135562.
56
Zhang Y, Fang M, Xie W, et al.Sprayable alginate hydrogel dressings with oxygen production and exosome loading for the treatment of diabetic wounds[J].Int J Biol Macromol, 2023, 242(Pt 3):125081.doi:10.1016/j.ijbiomac.2023.125081.
57
Geng X, Qi Y, Liu X, et al.A multifunctional antibacterial and self- healing hydrogel laden with bone marrow mesenchymal stem cell- derived exosomes for accelerating diabetic wound healing[J].Biomater Adv, 2022, 133:112613.doi: 10.1016/j.msec.2021.112613.
58
Fan MH, Zhang XZ, Jiang YL, et al.Exosomes from hypoxic urine- derived stem cells facilitate healing of diabetic wound by targeting SERPINE1 through miR-486-5p[J].Biomaterials, 2025,314:122893.doi: 10.1016/j.biomaterials.2024.122893.
59
Shi Q, Qian Z, Liu D, et al.GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model[J].Front Physiol, 2017, 8:904.doi: 10.3389/fphys.2017.00904.
60
Zhang Q, Su P, Zhao F, et al.Enhancing skin injury repair: combined application of PF-127 hydrogel and hADSC-Exos containing miR- 148a-3p [J].ACS Biomater Sci Eng, 2024, 10(4): 2235-2250.
61
Li D, Wu N.Mechanism and application of exosomes in the wound healing process in diabetes mellitus[J].Diabetes Res Clin Pract, 2022,187:109882.doi: 10.1016/j.diabres.2022.109882.
62
Han C, Liu F, Zhang Y, et al.Human umbilical cord mesenchymal stem cell derived exosomes delivered using silk fibroin and sericin composite hydrogel promote wound healing[J].Front Cardiovasc Med,2021, 8:713021.doi: 10.3389/fcvm.2021.713021.
63
Tang T, Chen L, Zhang M, et al.Exosomes derived from BMSCs enhance diabetic wound healing through circ-Snhg11 delivery[J].Diabetol Metab Syndr, 2024, 16(1):37.doi: 10.1186/s13098-023-01210-x.
[1] 王玺玉, 赵俊杰, 黄鹏飞, 张兆坤, 赵宇昊, 赵海燕. 基质金属蛋白酶响应性水凝胶在骨关节炎的应用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 76-81.
[2] 靳顺欣, 庞嘉越成, 肖仕初. 基于上皮嵴微结构的移植物在促进创面愈合中的作用机制与临床应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 174-178.
[3] 彭巍, 刘旭, 刘佳琦. 脱细胞细胞外基质在皮肤损伤修复中的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 169-173.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[6] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[7] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[8] 张心怡, 吕军好, 陈大进. 2023年肾移植领域研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(01): 7-11.
[9] 万周程, 钟章锋, 钟侨霖, 王景浩, 刘婷, 王华军, 郑小飞. 中药有效成分结合生物材料在骨组织工程中作用的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 249-253.
[10] 赵敏廷, 张郭, 孙家明. 调节性T细胞与组织修复再生[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(01): 51-55.
[11] 韩明, 赵岩. 组织工程策略延缓椎间盘退变的现状与前景[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(05): 310-314.
[12] 黄佳男, 蒋拓颖, 姚克, 余路阳, 李金英. 羊膜及其来源上皮干细胞在角膜再生医学中的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(05): 299-303.
[13] 孙明策, 韩世焕. 海藻酸盐水凝胶支架在颅骨缺损修复中的应用进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 310-314.
[14] 周宝林, 刘曦, 谌浩, 王金, 马雪琴. 温敏水凝胶在血管内栓塞治疗中的研究进展[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 244-249.
[15] 何青, 王钰莹, 范振海, 林风琴, 陈辉, 刘燕飞, 刘娟, 何志旭, 余丽梅. 省级重点实验室细胞工程技术平台产学研用开放共享的实践探索[J/OL]. 中华临床实验室管理电子杂志, 2024, 12(01): 1-6.
阅读次数
全文


摘要