切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2023, Vol. 13 ›› Issue (05) : 299 -303. doi: 10.3877/cma.j.issn.2095-1221.2023.05.006

综述

羊膜及其来源上皮干细胞在角膜再生医学中的研究进展
黄佳男, 蒋拓颖, 姚克, 余路阳, 李金英()   
  1. 310058 杭州,浙江大学生命科学学院,生物系统稳态与保护教育部重点实验室,生命科学学院-赛傲生物再生生物学联合实验室;310009 杭州,浙江大学医学院附属第二医院眼科中心
    310058 杭州,浙江大学生命科学学院,生物系统稳态与保护教育部重点实验室,生命科学学院-赛傲生物再生生物学联合实验室
    310009 杭州,浙江大学医学院附属第二医院眼科中心
    310058 杭州,浙江大学生命科学学院,生物系统稳态与保护教育部重点实验室,生命科学学院-赛傲生物再生生物学联合实验室;323000 丽水,丽水学院中医药与健康产业学院
  • 收稿日期:2023-05-08 出版日期:2023-10-01
  • 通信作者: 李金英
  • 基金资助:
    国家自然科学基金(82300296); 浙江省重点研发计划"领雁"研发攻关计划项目(2022C03097); 浙江省自然科学基金重点项目(LZ20H020002)

Advances of amniotic membrane and its derived epithelial stem cells in corneal regenerative medicine

Jianan Huang, Tuoying Jiang, Ke Yao, Luyang Yu, Jinying Li()   

  1. MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
    MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
    Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
    MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; College of Traditional Chinese Medicine and Health Industry, Lishui University, Lishui 323000, China
  • Received:2023-05-08 Published:2023-10-01
  • Corresponding author: Jinying Li
引用本文:

黄佳男, 蒋拓颖, 姚克, 余路阳, 李金英. 羊膜及其来源上皮干细胞在角膜再生医学中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(05): 299-303.

Jianan Huang, Tuoying Jiang, Ke Yao, Luyang Yu, Jinying Li. Advances of amniotic membrane and its derived epithelial stem cells in corneal regenerative medicine[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(05): 299-303.

角膜损伤是一类重要的致盲性眼病,严重影响患者的视觉效果和生活质量。羊膜位于胎盘的最内层,是围产期干细胞的重要来源。羊膜上皮干细胞(AESCs)具有多潜能性、低免疫原性、免疫调节和分泌多种生长因子等特性。在临床前研究中,可以直接进行羊膜移植,或将其作为干细胞载体,也可以利用羊膜提取物促进角膜的修复重建。此外,AESCs分化后移植,AESCs培养上清及外泌体对于眼表损伤修复也显示出良好的效果。在临床实践中,羊膜的主要应用是直接移植或搭载干细胞移植。本文就羊膜和AESCs的特性及其在角膜再生医学中的应用进行综述,为今后的研究奠定基础。

Corneal injury is an important category of blinding eye diseases, which seriously impairs patients' visual effect and life quality. Located in the innermost layer of the placenta, the amniotic membrane is a notable source of perinatal stem cells. Amniotic epithelial stem cells (AESCs) possess the characteristics of pluripotency, low immunogenicity, immune regulation, and secretion of multiple growth factors. In preclinical studies, amniotic membrane transplantation can be performed directly, or it can be used as a stem cell carrier, or amniotic membrane extract can be used to promote corneal repair. In addition, transplantation of AESCs after differentiation, culture supernatant and exosomes of AESCs also showed good effects on corneal injury repair. In clinical practice, the amniotic membrane is administrated through direct transplantation or transplantation with stem cells. This article reviews the characteristics of the amniotic membrane and AESCs and their application in corneal regenerative medicine to lay a foundation for future research.

图1 羊膜及羊膜上皮干细胞的特性注:SSEA-4为阶段特异性胚胎抗原-4;NANOG为同源框蛋白;OCT-4为转录因子,维持胚胎性干细胞的多能性;MHC Ⅱ为主要组织相容性复合体类Ⅱ分子
1
Barrientez B, Nicholas SE, Whelchel A, et al. Corneal injury: clinical and molecular aspects [J]. Exp Eye Res, 2019,186:107709.
2
Singh R, Gupta N, Vanathi M, et al. Corneal transplantation in the modern era [J]. Indian J Med Res, 2019,150(1):7-22.
3
Jahanafrooz Z, Bakhshandeh B, Behnam Abdollahi S, et al. Human amniotic membrane as a multifunctional biomaterial: recent advances and applications [J]. J Biomater Appl, 2023,37(8):1341-1354.
4
Lacorzana J. Amniotic membrane, clinical applications and tissue engineering. Review of its ophthalmic use [J]. Arch Soc Esp Oftalmol (Engl Ed), 2020,95(1):15-23.
5
López Martínez JA, Rodríguez Valiente M, Fuente-Mora C, et al. Use of cryopreserved human amniotic membrane in the treatment of skin ulcers secondary to calciphylaxis[J]. Dermatol Ther, 2021, 34(2): e14769.
6
Li J, Qiu C, Zhang Z, et al. Subretinal transplantation of human amniotic epithelial cells in the treatment of autoimmune uveitis in rats [J]. Cell Transplant, 2018, 27(10):1504-1514.
7
Bai X, Liu J, Yuan W, et al. Therapeutic effect of human amniotic epithelial cells in rat models of intrauterine adhesions[J]. Cell Transplant, 2020, 29:963689720908495.
8
Tan B, Yuan W, Li J, et al. Therapeutic effect of human amniotic epithelial cells in murine models of hashimoto's thyroiditis and systemic lupus erythematosus[J]. Cytotherapy, 2018,20(10):1247-1258.
9
Leal-Marin S, Kern T, Hofmann N, et al. Human amniotic membrane: a review on tissue engineering, application, and storage[J]. J Biomed Mater Res B Appl Biomater, 2021,109(8):1198-1215.
10
Yang PJ, Yuan WX, Liu J, et al. Biological characterization of human amniotic epithelial cells in a serum-free system and their safety evaluation[J]. Acta Pharmacol Sin, 2018,39(8):1305-1316.
11
Qiu C, Ge Z, Cui W, et al. Human amniotic epithelial stem cells: a promising seed cell for clinical applications[J]. Int J Mol Sci, 2020,21(20):7730.
12
Zhang Q, Lai D. Application of human amniotic epithelial cells in regenerative medicine: A systematic review [J]. Stem Cell Res Ther, 2020, 11(1):439.
13
Liu QW, Huang QM, Wu HY, et al. Characteristics and therapeutic potential of human amnion-derived stem cells [J]. Int J Mol Sci, 2021, 22(2):970.
14
Banas RA, Trumpower C, Bentlejewski C, et al. Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor cells [J]. Hum Immunol, 2008, 69(6):321-328.
15
McDonald C, Siatskas C, Bernard C. The emergence of amnion epithelial stem cells for the treatment of multiple sclerosis[J]. Inflammation and Regeneration, 2011,31(3). doi:10.2492/inflammregen.31.256.
16
Wassmer CH, Berishvili E. Immunomodulatory properties of amniotic membrane derivatives and their potential in regenerative medicine[J]. Curr Diab Rep, 2020,20(8):31.
17
Munoz-Torres JR, Martínez-González SB, Lozano-Luján AD, et al. Biological properties and surgical applications of the human amniotic membrane[J]. Front Bioeng Biotechnol, 2022,10:1067480.
18
Jie J, Yang J, He H, et al. Tissue remodeling after ocular surface reconstruction with denuded amniotic membrane [J]. Sci Rep, 2018, 8(1):6400.
19
Hu Z, Luo Y, Ni R, et al. Biological importance of human amniotic membrane in tissue engineering and regenerative medicine[J]. Mater Today Bio, 2023, 22:100790.
20
Walkden A. Amniotic membrane transplantation in ophthalmology: An updated perspective [J]. Clin Ophthalmol, 2020, 14:2057-2072.
21
Zhao X, Zuo X, Zhong J, et al. Heparin-modified amniotic membrane combined with growth factors for promoting corneal wound healing after alkali burn [J]. Front Bioeng Biotechnol, 2020, 8:599800.
22
Mayer WJ, Grüterich M, Kook D, et al. Modification of amniotic membrane as a depot carrier for bevacizumab - an in-vitro model for a slow release mechanism [J]. Curr Eye Res, 2013,38(4):445-450.
23
Hazarika M, Prajna NV, Senthilkumari S. Drug reservoir function of voriconazole impregnated human amniotic membrane: An in vitro study[J]. Indian J Ophthalmol, 2021,69(5):1068-1072.
24
Utheim TP, Aass Utheim Ø, Salvanos P, et al. Concise review: Altered versus unaltered amniotic membrane as a substrate for limbal epithelial cells [J]. Stem Cells Transl Med, 2018,7(5):415-427.
25
Zhang T, Yam GH, Riau AK, et al. The effect of amniotic membrane de-epithelialization method on its biological properties and ability to promote limbal epithelial cell culture [J]. Invest Ophthalmol Vis Sci, 2013,54(4):3072-3081.
26
Liu H, Zhou Z, Lin H, et al. Synthetic nanofiber-reinforced amniotic membrane via interfacial bonding [J]. ACS Appl Mater Interfaces, 2018,10(17):14559-14569.
27
Zhao J, Fan T, Ma X, et al. Construction of a high cell density human corneal endothelial equivalent and its transplantation in primate models [J]. Xenotransplantation, 2019, 26(4):e12514.
28
Monteiro BG, Loureiro RR, Cristovam PC, et al. Amniotic membrane as a biological scaffold for dental pulp stem cell transplantation in ocular surface reconstruction [J]. Arq Bras Oftalmol, 2019,82(1):32-37.
29
López S, Hoz L, Tenorio EP, et al. Can human oral mucosa stem cells differentiate to corneal epithelia?[J]. Int J Mol Sci, 2021, 22(11):5976.
30
Nosrati H, Alizadeh Z, Nosrati A, et al. Stem cell-based therapeutic strategies for corneal epithelium regeneration[J]. Tissue Cell, 2021, 68:101470.
31
Wang M, Li Y, Wang H, et al. Corneal regeneration strategies: From stem cell therapy to tissue engineered stem cell scaffolds [J]. Biomed pharmacother, 2023, 165:115206.
32
Guo Q, Hao J, Yang Q, et al. A comparison of the effectiveness between amniotic membrane homogenate and transplanted amniotic membrane in healing corneal damage in a rabbit model [J]. Acta Ophthalmol, 2011, 89(4):e315-319.
33
Tighe S, Moein HR, Chua L, et al. Topical cryopreserved amniotic membrane and umbilical cord eye drops promote re-epithelialization in a murine corneal abrasion model [J]. Invest Ophthalmol Vis Sci, 2017, 58(3):1586-1593.
34
Wu MF, Stachon T, Langenbucher A, et al. Effect of amniotic membrane suspension (ams) and amniotic membrane homogenate (amh) on human corneal epithelial cell viability, migration and proliferation in vitro[J]. Curr Eye Res, 2017, 42(3):351-357.
35
Choi JA, Jin HJ, Jung S, et al. Effects of amniotic membrane suspension in human corneal wound healing in vitro[J]. Mol Vis, 2009, 15:2230-2238.
36
Yam GH, Yusoff NZ, Kadaba A, et al. Ex vivo propagation of human corneal stromal "activated keratocytes" for tissue engineering [J]. Cell Transplant, 2015, 24(9):1845-1861.
37
Zhu YT, Li F, Zhang Y, et al. Hc-ha/ptx3 purified from human amniotic membrane reverts human corneal fibroblasts and myofibroblasts to keratocytes by activating bmp signaling [J]. Invest Ophthalmol Vis Sci, 2020,61(5):62.
38
Yao M, Chen J, Yang XX, et al. Differentiation of human amniotic epithelial cells into corneal epithelial-like cells in vitro [J]. Int J Ophthalmol, 2013, 6(5):564-572.
39
Luo H, Lu Y, Wu T, et al. Construction of tissue-engineered cornea composed of amniotic epithelial cells and acellular porcine cornea for treating corneal alkali burn[J]. Biomaterials, 2013, 34(28):6748-6759.
40
Zhou Q, Liu XY, Ruan YX, et al. Construction of corneal epithelium with human amniotic epithelial cells and repair of limbal deficiency in rabbit models[J]. Hum Cell, 2015, 28(1):22-36.
41
Sha X, Liu Z, Song L, et al. Human amniotic epithelial cell niche enhances the functional properties of human corneal endothelial cells via inhibiting p53-survivin-mitochondria axis[J]. Exp Eye Res, 2013,116:36-46.
42
Kamiya K, Wang M, Uchida S, et al. Topical application of culture supernatant from human amniotic epithelial cells suppresses inflammatory reactions in cornea[J]. Exp Eye Res, 2005,80(5):671-679.
43
Fathi I, Miki T. Human amniotic epithelial cells secretome: components, bioactivity, and challenges[J]. FrontMed, 2022,8:763141.
44
Hu S, Wang Z, Jin C, et al. Human amniotic epithelial cell-derived extracellular vesicles provide an extracellular matrix-based microenvironment for corneal injury repair[J]. J Tissue Eng, 2022, 13:20417314221122123.
45
Clare G, Bunce C, Tuft S. Amniotic membrane transplantation for acute ocular burns[J]. Cochrane Database Syst Rev, 2022, 9(9):CD009379.
46
Liu J, Li L, Li X. Effectiveness of cryopreserved amniotic membrane transplantation in corneal ulceration: a Meta-analysis[J]. Cornea, 2019, 38(4):454-462.
47
Siu GDJ, Kam KW, Young AL. Amniotic membrane transplant for bullous keratopathy: Confocal microscopy & anterior segment optical coherence tomography[J]. Semin Ophthalmol, 2019, 34(3):163-167.
48
de Farias CC, Allemann N, Gomes . Randomized trial comparing amniotic membrane transplantation with lamellar corneal graft for the treatment of corneal thinning[J]. Cornea, 2016, 35(4):438-444.
49
Konomi K, Satake Y, Shimmura S, et al. Long-term results of amniotic membrane transplantation for partial limbal deficiency[J]. Cornea, 2013, 32(8):1110-1115.
50
Campbell JDM, Ahmad S, Agrawal A, et al. Allogeneic ex vivo expanded corneal epithelial stem cell transplantation: a randomized controlled clinical trial[J]. Stem Cells Transl Med, 2019, 8(4):323-331.
51
Dua HS, Miri A, Elalfy MS, et al. Amnion-assisted conjunctival epithelial redirection in limbal stem cell grafting[J]. Br J Ophthalmol, 2017, 101(7):913-919.
52
Gopakumar V, Agarwal S, Srinivasan B, et al. Clinical outcome of autologous cultivated oral mucosal epithelial transplantation in ocular surface reconstruction[J]. Cornea, 2019, 38(10):1273-1279.
53
Baradaran-Rafii A, Asl NS, Ebrahimi M, et al. The role of amniotic membrane extract eye drop (ameed) in in vivo cultivation of limbal stem cells[J]. Ocul Surf, 2018, 16(1):146-153.
54
Parmar DN, Alizadeh H, Awwad ST, et al. Ocular surface restoration using non-surgical transplantation of tissue-cultured human amniotic epithelial cells[J]. Am J Ophthalmol, 2006, 141(2):299-307.
55
Hori J, Kunishige T, Nakano Y. Immune checkpoints contribute corneal immune privilege: implications for dry eye associated with checkpoint inhibitors[J]. Int J Mol Sci, 2020, 21(11):3962.
56
Hanstock HG, Edwards JP, Walsh NP. Tear lactoferrin and lysozyme as clinically relevant biomarkers of mucosal immune competence[J]. Front Immunol, 2019, 10:1178.
57
Kumar A, Yun H, Funderburgh ML, et al. Regenerative therapy for the cornea[J]. Prog Retin Eye Res, 2022, 87:101011.
58
Zhang H, Jin ZB. A rational consideration of the genomic instability of human-induced pluripotent stem cells for clinical applications[J]. Sci China Life Sci, 2023, 66(9):2198-2200.
[1] 卞玉香, 王丽春, 蔡蓉. 胎儿超声软指标对胎儿染色体异常的预测价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 85-92.
[2] 任琼, 吴东燕, 李中花, 石晶, 张静, 耿丽伟. 血清降钙素原、基质金属蛋白酶-9和可溶性细胞间黏附分子-1联合检测对绒毛膜羊膜炎的诊断价值[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 194-199.
[3] 张修源, 吕军好, 陈大进. 2022年肾移植领域研究进展[J]. 中华移植杂志(电子版), 2023, 17(01): 32-35.
[4] 疏文志, 杨梦凡, 潘斌华, 苏仁义, 林祖源, 杨墨丹, 张镇胜, 宋一粟, 卢正阳, 郑树森, 徐骁, 魏绪勇. 人羊膜上皮干细胞通过调节M1/M2型巨噬细胞极化减轻小鼠肝脏缺血再灌注损伤的实验研究[J]. 中华移植杂志(电子版), 2023, 17(01): 36-41.
[5] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[6] 李埝, 赵建军, 张建勇, 赵睿桢. hAMSCs调控MAPK信号通路对急性肺损伤AQP1的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 156-163.
[7] 赵子祯, 严紫娟, 王家传. 脑类器官培养技术进展及其在缺血性脑卒中损伤修复中的应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 121-128.
[8] 王文莹, 田磊, 潘志强. 3%地夸磷索钠滴眼液治疗干眼前后自觉症状改善和体征变化关系的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(05): 279-284.
[9] 江卓婷, 高妍, 李春晖. 相干光断层扫描在角膜屈光手术术前筛查中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 247-251.
[10] 崔梦凡, 贺瑞, 李晓娜, 陈维毅, 宋耀文. 角膜生物力学评估参数的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 236-240.
[11] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[12] 赵欣, 赵晴, 张华. 角膜地形图引导个性化切削屈光术矫正近视眼和散光的早期临床疗效[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 210-214.
[13] 陈灏楠, 肖伟. 透明角膜切口对白内障术后角膜散光的影响及其精准测量的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 172-176.
[14] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[15] 曹宇, 苗泽群, 王凯, 王乐今. 关注交联技术的发展及巩膜交联技术在控制近视发展中的潜在应用价值[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 65-69.
阅读次数
全文


摘要