切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (05) : 314 -318. doi: 10.3877/cma.j.issn.2095-1221.2020.05.011

所属专题: 文献

综述

三维培养的间充质干细胞球体的生物学特性及应用的研究进展
唐敏英1, 雷艳2, 詹世淮3, 李荣春3, 路君1, 吴仲秋4,()   
  1. 1. 350025 福州,联勤保障部队第900医院基础医学实验室;350025 福州,联勤保障部队第900医院福建省移植生物学重点实验室
    2. 350025 福州,联勤保障部队第900医院检验科
    3. 350025 福州,联勤保障部队第900医院基础医学实验室
    4. 350025 福州,联勤保障部队第900医院超声诊断科
  • 收稿日期:2020-06-01 出版日期:2020-10-01
  • 通信作者: 吴仲秋
  • 基金资助:
    联勤保障部队第900医院院内课题战时伤病救治研究专项(2018Z05)

Advances in biological characteristics and applications of mesenchymal stem cells spheroids under three-dimensional culture

Minying Tang1, Yan Lei2, Shihuai Zhan3, Rongchun Li3, Jun Lu1, Zhongqiu Wu4,()   

  1. 1. Basic Medical Laboratory, the 900th Hospital of Joint Logistics Support Force, Fuzhou 350025, China; Key Laboratory of Transplant Biology, the 900th Hospital of Joint Logistics Support Force, Fuzhou 350025, China
    2. Clinical Laboratory, the 900th Hospital of Joint Logistics Support Force, Fuzhou 350025, China
    3. Basic Medical Laboratory, the 900th Hospital of Joint Logistics Support Force, Fuzhou 350025, China
    4. Department of Ultrasound Diagnosis, the 900th Hospital of Joint Logistics Support Force, Fuzhou 350025, China
  • Received:2020-06-01 Published:2020-10-01
  • Corresponding author: Zhongqiu Wu
  • About author:
    Corresponding author:Wu Zhongqiu, Email:
引用本文:

唐敏英, 雷艳, 詹世淮, 李荣春, 路君, 吴仲秋. 三维培养的间充质干细胞球体的生物学特性及应用的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2020, 10(05): 314-318.

Minying Tang, Yan Lei, Shihuai Zhan, Rongchun Li, Jun Lu, Zhongqiu Wu. Advances in biological characteristics and applications of mesenchymal stem cells spheroids under three-dimensional culture[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(05): 314-318.

二维(2D)贴壁培养是间充质干细胞体外扩增的标准技术,但其局限性也很明显,比如组织特异性的结构、生物学行为及细胞间的相互作用在2D环境中缺失。三维(3D)培养是一种模拟体内生长环境的细胞培养方式,通过让细胞聚集成3D球体或者将细胞在成分结构类似于实体组织的3D结构载体上黏附、伸展和生长,从时间和空间上共同调控细胞的增殖和分化,使特性和功能得以较大程度保留。与2D培养相比,3D培养增强了细胞与细胞之间以及细胞与胞外基质之间的相互作用,更准确地模拟细胞在体内的自然微环境。3D培养也解决了MSCs在体外增殖能力减低的问题,MSCs成脂、成骨和成软骨的能力增强。MSCs球体的制备(微球体黏附培养)被认为是提高MSCs细胞疗法的优化方式之一,MSCs球体的形成能增强抗炎作用、增强血管生成、增加组织再生和修复作用并提高MSCs移植后的存活率。本文就微球体黏附培养MSCs的生物学特性及其应用进展进行综合阐述。

Traditionally, two-dimensional (2D) adherent culture conditions have been used as a standard technique for in vitro expansion of mesenchymal stem cells (MSCs) , but their limitations are also obvious, such as the absence of tissue-specific structures, biological behavior and cellular interactions in the two-dimensional environment. In contrast, 3D cell culture is regarded as a mode simulating the growth environment in vivo. By aggregating cells into 3D spheres or attaching, extending, and growing on three-dimensional structural vectors whose components are similar to solid tissue, cell proliferation and differentiation are regulated in both time- and space-dependent manners. Thus, the characteristics and functions of cells cultured in 3D can be better preserved. The 3D spheroid culture enhances cell-cell and cell-extracellular matrix (ECM) interactions and closely mimics the natural microenvironment of a tissue as compared with traditional 2D monolayer culture. In addition, 3D culture also solves the problem of decreased proliferation of MSCs in vitro, and the capabilities of adipogenesis, osteogenesis and chondrogenesis of MSC spheroids were significantly enhanced in 3D culture. In conclusion, the preparation of MSCs spheroids (microsphere adhesion culture) is considered as one of the optimal ways to improve MSCs-based cell therapy. The application of 3D MSCs spheroids can enhance anti-inflammatory effect, promote angiogenesis, increase tissue regeneration and repair, and improve the survival rate of MSCs after transplantation. In this review, we discuss the biological characteristics and applications of MSCs spheroids under three-dimensional culture.

1
Abbasi-Malati Z, Roushandeh AM, Kuwahara Y, et al. Mesenchymal stem cells on horizon: a new arsenal of therapeutic agents[J]. Stem cell Rev Rep, 2018, 14(4):484-499.
2
Cesarz Z, Tamama K. Spheroid culture of mesenchymal stem cells[J]. Stem Cells Int, 2016, 2016:9176357. doi:10.1155/2016/9176357.
3
Ravi M, Paramesh V, Kaviya SR, et al. 3D cell culture systems: Advantages and applications[J]. J Cell Physiol, 2015, 230(1):16-26.
4
Knight E, Przyborski S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro[J]. J Anat, 2015, 227(6):746-756.
5
詹世淮,雷艳,黄梁浒, 等. 三维细胞培养技术应用于肿瘤细胞的研究进展[J/CD]. 中华细胞与干细胞杂志(电子版), 2016, 6(4):248-251.
6
Williams EK, García JR, Mannino RG, et al. Enabling mesenchymal stromal cell immunomodulatory analysis using scalable platforms[J]. Integr Biol (Camb), 2019, 11(4):154-162.
7
Choi J, Lee EK, Choo J, et al. Micro 3D cell culture systems for cellular behavior studies:culture matrices, devices, substrates, and in-situ sensing methods[J]. Biotechnol J, 2015, 10(11):1682-1688.
8
Jakubikova J, Cholujova D, Hideshima T, et al. A novel 3D mesenchymal stem cell model of the multiple myeloma bone marrow niche: biologic and clinical applications[J]. Oncotarget, 2016, 7(47): 77326-77341.
9
Bellotti C, Duchi S, Bevilacqua A, et al. Long term morphological characterization of mesenchymal stromal cells 3D spheroids built with a rapid method based on entrylevel equipment[J]. Cytotechnology, 2016, 68(6):2479-2490.
10
Zhou Y, Chen H, Li H, et al. 3D culture increases pluripotent gene expression in mesenchymal stem cells through relaxation of cytoskeleton tension[J]. J Cell Mol Med, 2017, 21(6):1073-1084.
11
Mo MH, Zhou Y, Li S, et al. Three-dimensional culture reduces cell size by increasing vesicle excretion[J]. Stem cells, 2018, 36(2):286-292.
12
Bae YJ, Kwon YR, Kim HJ, et al. Enhanced differentiation of mesenchymal stromal cells by three-dimensional culture and azacitidine[J]. 2017, 52(1):18-24.
13
Shekaran A, Sim E, Tan KY, et al. Enhanced in vitro osteogenic differentiation of human fetal MSCs attached to 3D microcarriers versus harvested from 2D monolayers[J]. BMC Biotechnol, 2015, 15:102.
14
Chatterjea A, LaPointe VL, Barradas A, et al. Cell aggregation enhances bone formation by human mesenchymal stromal cells[J]. Eur Cell Mater, 2017, 33:121-129.
15
Tietze S, Kräter M, Jacobi A, et al. Spheroid culture of mesenchymal stromal cells results in morphorheological properties appropriate for improved microcirculation[J]. Adv Sci, 2019, 6(8):1802104.
16
Saleh F, Carstairs A, Etheridge SL, et al. Real-time analysis of endogenous wnt signalling in 3D mesenchymal stromal cells[J]. Stem Cells Int, 2016, 2016:7132529.
17
Su N, Gao PL, Wang K, et al. Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: a new dimension in cell-material interaction[J]. Biomaterials, 2017, 141:74-85.
18
Carter K, Lee HJ, Na KS, et al. Characterizing the impact of 2D and 3D culture conditions on the therapeutic effects of human mesenchymal stem cell secretome on corneal wound healing in vitro and ex vivo[J]. Acta Biomater, 2019, 99:247-257.
19
Bartosh TJ, Ylostalo JH. Efficacy of 3D culture priming is maintained in human mesenchymal stem cells after extensive expansion of the cells[J]. Cells, 2019, 8(9):1031.
20
Tietze S, Kräter M, Jacobi A, et al. Spheroid culture of mesenchymal stromal cells results in morphorheological properties appropriate for improved microcirculation[J]. Adv Sci (Weinh), 2019, 6(8):1802104.
21
Li Y, Guo G, Li L, et al. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance[J]. Cell Tissue Res, 2015, 360(2):297-307.
22
Follin B, Juhl M, Cohen S, et al. Increased paracrine immunomodulatory potential of mesenchymal stromal cells in three-dimensional culture[J]. Tissue Eng Part B Rev, 2016, 22(4):322-329.
23
Ylostalo JH, Bazhanov N, Mohammadipoor A, et al. Production and administration of therapeutic mesenchymal stem/stromal cell (MSC) spheroids primed in 3-D cultures under xeno-free conditions[J]. J Vis Exp, 2017, (121):55126.
24
Bartosh TJ, Ylöstalo JH, Bazhanov N, et al. Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1)[J]. Stem Cells, 2013, 31(11):2443-2456.
25
Samsonraj RM, Raghunath M, Nurcombe V, et al. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine[J]. Stem Cells Transl Med, 2017, 6(12):2173-2185.
26
Xu Y, Shi TP, Xu AX, et al. 3D spheroid culture enhances survival and therapeutic capacities of MSCs injected into ischemic kidney[J]. J Cell Mol Med, 2016, 20(7):1203-1213.
27
Rettinger CL, Fourcaudot AB, Hong SJ, et al. In vitro characterization of scaffold-free three-dimensional mesenchymal stem cell aggregates[J]. Cell Tissue Res, 2014, 358(2):395-405.
28
Petrenko y, Syková E, Kubinová S. The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids[J]. Stem Cell Res Ther, 2017, 8(1):94.
29
Lam AT, Sim EJ, Shekaran, et al. Sub-confluent culture of human mesenchymal stromal cells on biodegradable polycaprolactone mircrocarriers enhances bone healing of rat calvarial defect[J]. Cytotherapy, 2019, 21(6):631-642.
30
Sobacchi C, Erreni M, Strina D et al. 3D bone biomimetic scaffolds for basic and translational studies with mesenchymal stem cells[J]. Int J Mol Sci, 2018, 19(10):3150.
31
Chen L, Wu J, Wu C, et al. Three-dimensional co-culture of peripheral blood-derived mesenchymal stem cells and endothelial progenitor cells for bone regeneration[J]. J Biomed Nanotechnol, 2019, 15(2):248-260.
32
Kim TH, Choi JH, Jun Y, et al. 3D-cultured human placenta-derived mesenchymal stem cell spheroids enhance ovary function by inducing folliculogenesis[J]. Sci Rep, 2018, 8(1):15313.
33
徐竹,诸葛启钊,黄李洁. 干细胞3D支架的研究进展[J]. 中国生物工程杂志, 2017, 37(9):112-117.
34
Yu H, Cauchois G, Louvet N, et al. Comparison of MSCs properties in two different hydrogels. Impact of mechanical properties[J]. Biomed Mater Eng, 2017, 28(s1):S193-S200.
[1] 别瑶, 曹志斌, 辛静, 王健楠, 惠宗光. 应用基质血管成分细胞治疗糖尿病足溃疡的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 453-456.
[2] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[3] 汤宏涛, 何坤. 中晚期肝细胞癌介入治疗的进展及前景[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 305-308.
[4] 朱佳琳, 方向, 贵诗雨, 黄丹, 周小雨, 郭文恺. 大鼠切口疝腹膜前间隙补片修补术后血清中VEGF 和Ang-1 的表达情况[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 703-707.
[5] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[6] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[7] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[8] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[9] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[10] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[11] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[12] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[13] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[14] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
[15] 谢世锋, 林熙, 吴桂涛, 刘珍银. 散发性静脉畸形发病机制分子研究进展[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 250-255.
阅读次数
全文


摘要