切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (05) : 301 -311. doi: 10.3877/cma.j.issn.2095-1221.2025.05.007

所属专题: 文献

综述

干细胞外泌体临床转化挑战与应对策略
丁琳1,2,3,4, 梁敏莉1,2,3,4, 钟嘉琪1,2,3,4, 李富荣1,2,3,4,()   
  1. 1518020 深圳,南方科技大学第一附属医院(深圳市人民医院)转化医学协同创新中心
    2518020 深圳市免疫细胞治疗公共服务平台
    3518020 深圳,广东省干细胞与细胞治疗工程技术研究中心
    4518020 深圳市干细胞研究与临床转化重点实验室
  • 收稿日期:2025-07-01 出版日期:2025-10-01
  • 通信作者: 李富荣
  • 基金资助:
    国家自然科学基金(32300784); 深圳市医学研究专项(A2403018); 深圳市科技计划资助(JCYJ20220818102605012); 国家重点研发计划(2022YFA1104900)

Challenges and coping strategies for the clinical translation of stem cell-derived exosomes

Lin Ding1,2,3,4, Minli Liang1,2,3,4, Jiaqi Zhong1,2,3,4, Furong Li1,2,3,4,()   

  1. 1Center for Translational Medicine Collaborative Innovation, the First Affliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518020, China
    2Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
    3Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen 518020, China
    4Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China
  • Received:2025-07-01 Published:2025-10-01
  • Corresponding author: Furong Li
引用本文:

丁琳, 梁敏莉, 钟嘉琪, 李富荣. 干细胞外泌体临床转化挑战与应对策略[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(05): 301-311.

Lin Ding, Minli Liang, Jiaqi Zhong, Furong Li. Challenges and coping strategies for the clinical translation of stem cell-derived exosomes[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(05): 301-311.

干细胞外泌体作为无细胞治疗方案,规避活细胞移植风险,具有更高生物安全性,且可通过工程化修饰增强组织靶向性和治疗效能,有望成为替代干细胞的新型治疗策略。针对如何提高干细胞外泌体产量、批次稳定性、治疗效能及活性维持等临床转化挑战,本综述提出3D培养联合永生化细胞系方案、开发工程化赋能外泌体系统及发展创新外泌体保存技术的应对策略。旨在进一步推动干细胞外泌体在标准化生产、治疗应用及长效储存的临床转化进程。

Stem cell-derived exosomes, as a cell-free therapeutic approach, circumvent the risks associated with live cell transplantation and offer enhanced biological safety. Through engineering modifications, they can augment tissue targeting and therapeutic efficacy, making them a promising new treatment strategy that could potentially replace stem cells. In response to the clinical translation challenges, such as improving the yield, batch stability, therapeutic efficacy, and activity maintenance of stem cell-derived exosomes, this review proposes coping strategies including the use of 3D culture combined with immortalized cell lines, the development of engineered exosome empowerment systems, and innovative exosome preservation techniques aiming to further advance the clinical translation process of stem cell-derived exosomes in standardized production, therapeutic applications, and long-term storage.

图1 干细胞外泌体疗法临床转化三大核心挑战及应对策略
表1 常用生物反应器类型及优缺点
表2 当前常用外泌体提取技术的原理及优缺点
表3 近期外泌体提取纯化创新技术
技术名称 核心原理/技术 关键优势 应用场景/特点
超声纳滤技术(EXODUS系统,汇芯生物) 负压振荡+双耦合超声振荡作用于纳米超滤芯片,快速去除游离核酸/蛋白杂质并截留外泌体 全自动操作;支持微量样本(泪液、脑脊液)至规模化样本提取;杂蛋白去除效率> 99%;回收率> 90% 适用于需要高纯度、高回收率且样本量波动大的研究或临床场景
CytivaTM superSEC填料(切向流联用,Cytiva公司) 高分辨率尺寸排阻层析+优化流体动力学设计,结合切向流富集 缩短层析循环时间;提升杂质去除效率;纯度指数高于传统填料(如SepharoseTM CL-2B) 为外泌体规模化生产与临床应用提供可靠解决方案(如生物制药级外泌体纯化)
微流控技术[47,48] 分离型:双切向流+两种孔径纳米多孔膜;检测型:化学发光检测+杂交链反应 微量样本处理(如临床少量血液)、高活性外泌体获取;高灵敏度外泌体多靶标miRNA检测 适用于临床即时诊断(如肿瘤标志物外泌体快速检测)、微量样本的高精准分离
细胞内泌体提取[49,50] 低温"冷萃"裂解DPSCs细胞,直接分离内泌体 提取效率是外泌体的16倍;碱性成纤维细胞生长因子、脑源性神经营养因子、表皮生长因子受体等生长因子含量高于外泌体;低成本、操作简单 为细胞囊泡高效提取提供新思路(如干细胞来源囊泡的低成本制备),适用于再生医学研究
图2 外泌体工程化改造策略(本图由Figdraw绘制)
图3 外泌体质量控制五维体系
1
闫永利, 叶进培. hESC衍生间充质干细胞可显著促进体外血管生成[J]. 中国细胞生物学学报, 2021, 43(8):1561-1573.
2
Hughey CC, Ma LL, James FD, et al. Mesenchymal stem cell transplantation for the infarcted heart: therapeutic potential for insulin resistance beyond the heart[J]. Cardiovasc Diabetol, 2013, 12:128.
3
Ringdén O, Uzunel M, Rasmusson I, et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease[J]. Transplantation, 2006, 81(10):1390-1397.
4
Zeng LT, Liu C, Wu Y, et al. Efficacy and safety of mesenchymal stromal cell transplantation in the treatment of autoimmune and rheumatic immune diseases:a systematic review and meta-analysis of randomized controlled trials[J]. Stem Cell Res Ther, 2025, 16(1):65.
5
Datta N. Stem cell therapy for SARS-CoV-2 and influenza virus infections[J]. BIO Integration, 2024, 5(1):1-13.
6
Huang XS, Wang Y, Yan W, et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation[J]. Stem Cells, 2015, 33(5):1470-1479.
7
Liu N, Matsumura H, Kato T, et al. Stem cell competition orchestrates skin homeostasis and ageing[J]. Nature, 2019, 568(7752):344-350.
8
Mejia-Ramirez E, Geiger H, Florian MC. Loss of epigenetic polarity is a hallmark of hematopoietic stem cell aging[J]. Hum Mol Genet, 2020, 29(R2):R248-R254.
9
Bolton EM, Bradley JA. Avoiding immunological rejection in regenerative medicine[J]. Regen Med, 2015, 10(3):287-304.
10
Andersen MS, Jensen KB. Stem cell heterogeneity revealed[J]. Nat Cell Biol, 2016, 18(6):587-589.
11
Cao Q, Zhang R,Ye Q. Association and enterprise standard for producing and monitoring of quality extracellular vesicles/exosomes derived from human mesenchymal stem cells[J]. Nano Trans Med, 2024, 3:100058.
12
Tan F, Li XR, Wang Z, et al. Clinical applications of stem cell-derived exosomes[J]. Signal Transduct Target Ther, 2024, 9(1):17.
13
Li LY, Wang F, Zhu DS, et al. Engineering exosomes and exosome-like nanovesicles for improving tissue targeting and retention[J]. Fundam Res, 2025, 5(2):851-867.
14
Xing YH, Ren XS, Li DH, et al. Exosome separation and analysis based on microfluidics technology and its clinical applications[J]. Se Pu, 2025, 43(5):455-471.
15
叶青松, 彭友俭, 骆瑜. 细胞外泌体的分离提取标准化及临床转化进展[J]. 口腔疾病防治, 2022, 30(9):609-619.
16
Gelibter S, Marostica G, Mandelli A, et al. The impact of storage on extracellular vesicles: a systematic study[J]. J Extracell Vesicles, 2022, 11(2):e12162.
17
van de Wakker SI, Meijers FM, Sluijter JPG, et al. Extracellular vesicle heterogeneity and its impact for regenerative medicine applications[J]. Pharmacol Rev, 2023, 75(5):1043-1061.
18
Li CY, Wu XY, Tong JB, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy[J]. Stem Cell Res Ther, 2015, 6(1):55.
19
Amable PR, Teixeira MVT, Carias RBV, et al. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton's jelly[J]. Stem Cell Res Ther, 2014, 5(2):53.
20
Kirkham AM, Bailey AJM, Tieu A, et al. MSC-derived extracellular vesicles in preclinical animal models of bone injury: a systematic review and meta-analysis[J]. Stem Cell Rev Rep, 2022, 18(3):1054-1066.
21
Shi LY, Ye XC, Zhou J, et al. Roles of DNA methylation in influencing the functions of dental-derived mesenchymal stem cells[J]. Oral Dis, 2024, 30(5):2797-2806.
22
Almeria C, Kress S, Weber V, et al. Heterogeneity of mesenchymal stem cell-derived extracellular vesicles is highly impacted by the tissue/cell source and culture conditions[J]. Cell Biosci, 2022, 12(1):51.
23
Chen XL, Chen A, Woo TL, et al. Investigations into the metabolism of two-dimensional colony and suspended microcarrier cultures of human embryonic stem cells in serum-free media[J]. Stem Cells Dev, 2010, 19(11):1781-1792.
24
Tapp H, Deepe R, Ingram JA, et al. Adipose-derived mesenchymal stem cells from the sand rat: transforming growth factor beta and 3D co-culture with human disc cells stimulate proteoglycan and collagen type I rich extracellular matrix[J]. Arthritis Res Ther, 2008, 10(4):R89.
25
Park W, Jang S, Kim TW, et al. Microfluidic-printed microcarrier for in vitro expansion of adherent stem cells in 3D culture platform[J]. Macromol Biosci, 2019, 19(8):e1900136.
26
Wang X, Ouyang LM, Chen WX, et al. Efficient expansion and delayed senescence of hUC-MSCs by microcarrier-bioreactor system[J]. Stem Cell Res Ther, 2023, 14(1):284.
27
王晓勋, 张中. 不同微载体细胞培养技术在生物制品领域的应用[J]. 中国生物制品学杂志, 2023, 36(12):1515.
28
Yan XJ, Zhang K, Yang YP, et al. Dispersible and dissolvable porous microcarrier tablets enable efficient large-scale human mesenchymal stem cell expansion[J]. Tissue Eng Part C Methods, 2020, 26(5):263-275.
29
Feng L, Liang SJ, Zhou YY, et al. Three-dimensional printing of hydrogel scaffolds with hierarchical structure for scalable stem cell culture[J]. ACS Biomater Sci Eng, 2020, 6(5):2995-3004.
30
Haraszti RA, Miller R, Stoppato M, et al. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity[J]. Mol Ther, 2018, 26(12):2838-2847.
31
Yan LT, Wu X. Exosomes produced from 3D cultures of umbilical cord mesenchymal stem cells in a hollow-fiber bioreactor show improved osteochondral regeneration activity[J]. Cell Biol Toxicol, 2020, 36(2):165-178.
32
Kronstadt SM, Patel DB, Born LJ, et al. Mesenchymal stem cell culture within perfusion bioreactors incorporating 3D-printed scaffolds enables improved extracellular vesicle yield with preserved bioactivity[J]. Adv Healthc Mater, 2023, 12(20):e2300584.
33
Mi LY, Hu JP, Li N, et al. The mechanism of stem cell aging[J]. Stem Cell Rev Rep, 2022, 18(4):1281-1293.
34
Simonsen JL, Rosada C, Serakinci N, et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells[J]. Nat Biotechnol, 2002, 20(6):592-596.
35
Ahuja D, Sáenz-Robles MT, Pipas JM. SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation[J]. Oncogene, 2005, 24(52):7729-7745.
36
陈冬雪, 白喜龙, 梁英民. SV40-LT基因使牙髓干细胞永生化的研究[J]. 实用口腔医学杂志, 2022, 38(2):189-193.
37
Michael S, Lambert PF, Strati K. The HPV16 oncogenes cause aberrant stem cell mobilization[J]. Virology, 2013, 443(2):218-225.
38
Yamaguchi N, Horio E, Sonoda J, et al. Immortalization of mesenchymal stem cells for application in regenerative medicine and their potential risks of tumorigenesis[J]. Int J Mol Sci, 2024, 25(24):13562.
39
Basalova N, Sagaradze G, Arbatskiy M, et al. Secretome of mesenchymal stromal cells prevents myofibroblasts differentiation by transferring fibrosis-associated microRNAs within extracellular vesicles[J]. Cells, 2020, 9(5):1272.
40
Kraskiewicz H, Paprocka M, Bielawska-Pohl A, et al. Can supernatant from immortalized adipose tissue MSC replace cell therapy? An in vitro study in chronic wounds model[J]. Stem Cell Res Ther, 2020, 11(1):29.
41
Guo SW, Debbi L, Zohar B, et al. Stimulating extracellular vesicles production from engineered tissues by mechanical forces[J]. Nano Lett, 2021, 21(6):2497-2504.
42
Wang JL, Bonacquisti EE, Brown AD, et al. Boosting the biogenesis and secretion of mesenchymal stem cell-derived exosomes[J]. Cells, 2020, 9(3):660.
43
Fukuta T, Nishikawa A, Kogure K. Low level electricity increases the secretion of extracellular vesicles from cultured cells[J]. Biochem Biophys Rep, 2019, 21:100713.
44
Gonzalez-King H, García NA, Ontoria-Oviedo I, et al. Hypoxia inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes[J]. Stem Cells, 2017, 35(7):1747-1759.
45
Avnet S, Lemma S, Cortini M, et al. The release of inflammatory mediators from acid-stimulated mesenchymal stromal cells favours tumour invasiveness and metastasis in osteosarcoma[J]. Cancers (Basel), 2021, 13(22):5855.
46
李帅,刘亚婷, 仰大勇. 外泌体分离技术研究进展[J]. 化学学报, 2025, 83(4):428-438.
47
Hua X, Zhu Q, Liu Y, et al. A double tangential flow filtration-based microfluidic device for highly efficient separation and enrichment of exosomes[J]. Anal Chim Acta, 2023, 1258:341160.
48
Peng J, Li BC, Ma ZY, et al. A microfluidic-based chemiluminescence biosensor for sensitive multiplex detection of exosomal microRNAs based on hybridization chain reaction[J]. Talanta, 2025, 281:126838.
49
Duan XX, Zhang R, Feng HX, et al. A new subtype of artificial cell-derived vesicles from dental pulp stem cells with the bioequivalence and higher acquisition efficiency compared to extracellular vesicles[J]. J Extracell Vesicles, 2024, 13(7):e12473.
50
Ye Q, Zhang R. Intracellular vesicles: novel nanovesicles superior to extracellular vesicles in translational medicine and clinical applications[J]. Nano TransMed, 2024, 3:100044.
51
Hung ME, Leonard JN. Stabilization of exosome-targeting peptides via engineered glycosylation[J]. J Biol Chem, 2015, 290(13):8166-8172.
52
Yu YH, Li W, Mao L, et al. Genetically engineered exosomes display RVG peptide and selectively enrich a neprilysin variant: a potential formulation for the treatment of Alzheimer's disease[J]. J Drug Target, 2021, 29(10):1128-1138.
53
Zheng WY, He R, Liang XM, et al. Cell-specific targeting of extracellular vesicles though engineering the glycocalyx[J]. J Extracell Vesicles, 2022, 11(12):e12290.
54
Du W, Chen C, Liu YY, et al. A combined "eat me/don't eat me" strategy based on exosome for acute liver injury treatment[J]. Cell Rep Med, 2025, 6(4):102033.
55
Geng TJ, Leung E, Chamley LW, et al. Functionalisation of extracellular vesicles with cyclic-RGDyC potentially for glioblastoma targeted intracellular drug delivery[J]. Biomater Adv, 2023, 149:213388.
56
Fan YY, Zhou YS, Lu M, et al. Responsive dual-targeting exosome as a drug carrier for combination cancer immunotherapy[J]. Research, 2021, 2021:9862876.
57
Zhan Q, Yi KK, Qi HZ, et al. Engineering blood exosomes for tumor-targeting efficient gene/chemo combination therapy[J]. Theranostics, 2020, 10(17):7889-7905.
58
Zhou JL, Wang YH, Zhang LZ, et al. Engineered exosomes-mediated transfer of hsa-miR-320a overcomes chemoresistance in cervical cancer cells via targeting MCL1[J]. Front Pharmacol, 2022, 13:883445.
59
Huang JH, Yu MY, Yin WJ, et al. Development of a novel RNAi therapy: Engineered miR-31 exosomes promoted the healing of diabetic wounds[J]. Bioact Mater, 2021, 6(9):2841-2853.
60
Shi Y, Wang S, Liu DW, et al. Exosomal miR-4645-5p from hypoxic bone marrow mesenchymal stem cells facilitates diabetic wound healing by restoring keratinocyte autophagy[J]. Burns Trauma, 2024, 12:tkad058.
61
Chen W, Yang MC, Bai J, et al. Exosome-modified tissue engineered blood vessel for endothelial progenitor cell capture and targeted siRNA delivery[J]. Macromol Biosci, 2018, 18(2):1700242.
62
Hao R, Yu ZT, Du J, et al. A high-throughput nanofluidic device for exosome nanoporation to develop cargo delivery vehicles[J]. Small, 2021, 17(35):e2102150.
63
Son G, Song J, Park JC, et al. Fusogenic lipid nanoparticles for rapid delivery of large therapeutic molecules to exosomes[J]. Nat Commun, 2025, 16(1):4799.
64
Görgens A, Corso G, Hagey DW, et al. Identification of storage conditions stabilizing extracellular vesicles preparations[J]. J Extracell Vesicles, 2022, 11(6):e12238.
65
Wu JY, Li YJ, Hu XB, et al. Preservation of small extracellular vesicles for functional analysis and therapeutic applications: a comparative evaluation of storage conditions[J]. Drug Deliv, 2021, 28(1):162-170.
66
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1):1535750.
67
高雪, 慈小燕, 张英驰, 等. 间充质干细胞来源外泌体的分离及贮存方法研究进展[J]. 药物评价研究, 2024, 47(5):1146-1152.
68
吴颖杰, 耿梦缘, 汪晶, 等. 不同冻干保护剂在外泌体储存中的研究[J]. 天津医科大学学报, 2022, 28(4):353-359.
69
Ji R, Wang HL, Zheng X, et al. Tetraspanin 4 mediates cholesterol-dependent exosome membrane protection from cryodamage[J]. Nano Lett, 2025, 25(27):10722-10732.
[1] 魏志鑫, 宋本静, 蒋丽, 余清卿, 谢庆云, 廖冬发, 陈松. 软骨组织工程应用脱细胞干细胞基质的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(05): 597-608.
[2] 林志强, 李嘉欢, 张凯, 李文帅, 刘健, 邓泽群, 乔永杰, 周胜虎. 骨髓间充质干细胞在激素性股骨头坏死发病机制的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 464-471.
[3] 黄宇哲, 吴镔莎. 脂肪干细胞及其衍生物在不同创面愈合中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 442-446.
[4] 姚丹娜, 肖宇杰, 冯蓉琴, 孙盼盼, 魏莱, 王洪涛. 脂肪干细胞治疗慢性创面优化策略的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 447-451.
[5] 李俊涛, 刘贵华, 何子勤, 马朦惠, 赵阳杰, 肖楚天, 张翼飞, 颜禄斌, 梁晓燕, 王德娟. 单侧睾丸部分切除术在青春期前男孩生育力保存中的应用探索[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 759-764.
[6] 黄曼维, 杨镇泽, 陈一博, 宋佳龙, 黄庆波. 手术机器人赋能腔镜外科:技术进展与未来趋势[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(04): 251-256.
[7] 刘恒, 吴涛, 潘耀柱, 白海, 毛东锋, 田红娟, 石亚军, 葸瑞. CBA预处理方案用于异基因造血干细胞移植治疗急性髓系白血病/骨髓增生异常综合征的疗效及安全性分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(05): 283-289.
[8] 毛东锋, 姚琳, 吴涛, 刘文慧. 乳腺癌术后合并NUP98-HOXA9基因阳性急性髓系白血病1例临床报告[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(05): 290-292.
[9] 刘昱圻, 陈韵岱. 诱导多能干细胞构建心脏和血管类器官研究新进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(05): 293-300.
[10] 李晓, 张娇娇, 董友玉, 张在鹏, 蔡萌萌, 徐峰波. 间充质干细胞在再生医学中的基础研究与临床应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 229-237.
[11] 彭惊龙, 张潇月, 王红美. 脐带间充质干细胞治疗造血干细胞移植术后卵巢早衰的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 245-250.
[12] 马逸夫, 孙芳玲, 刘婷婷, 田欣, 王文. 神经干细胞永生化的机制及其应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 251-256.
[13] 吴刚, 严燃星, 严鑫, 阎婧, 何跃明, 朱倩. 基于血清和组织外泌体多组学分析筛选胰腺癌诊断和预后标志物[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 962-972.
[14] 罗臻, 韦鹏程, 孙馨, 李照. 肝细胞癌骨转移研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 522-527.
[15] 陈澳, 皇甫少华, 陆雅斐, 江滨. 间充质干细胞来源的外泌体多层面治疗IBD的疗效及机制探讨[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(05): 474-480.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?