| 1 |
Murugan D, Murugesan V, Panchapakesan B, et al. Nanoparticle enhancement of natural killer (NK) cell-based immunotherapy[J]. Cancers(Basel), 2022, 14(21):5438.
|
| 2 |
Liu S, Galat V, Galat Y, et al. NK cell-based cancer immunotherapy:from basic biology to clinical development[J]. J Hematol Oncol, 2021, 14(1):7.
|
| 3 |
Dai Z, Zhang J, Wu Q, et al. Intestinal microbiota:a new force in cancer immunotherapy[J]. Cell Commun Signal, 2020, 18(1):90.
|
| 4 |
陈琼, 吴卓龙, 黄吉炜. 免疫治疗在局部进展期肾癌围手术期治疗中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(4): 418-422.
|
| 5 |
June CH, Sadelain M. Chimeric antigen receptor therapy[J]. N Engl J Med, 2018, 379(1):64-73.
|
| 6 |
Gun SY, Lee SWL, Sieow JL, et al. Targeting immune cells for cancer therapy[J]. Redox Biol, 2019, 25:101174.
|
| 7 |
Mukhametshin SA, Gilyazova EM, Davletshin DR, et al. Allogeneic NKG2D CAR-T cell therapy: a promising approach for treating solid tumors[J]. Biomedicines, 2025, 13(9):2314.
|
| 8 |
Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell therapy[J]. Nat Rev Clin Oncol, 2019, 16(6):372-385.
|
| 9 |
Ershova A, Goldaeva A, Staliarova A, et al. Future perspectives on novel CAR-T therapeutics beyond CD19 and BCMA in onco-hematology[J]. Front Immunol, 2025, 16:1592377.
|
| 10 |
Grefe M, Trujillo-Ocampo A, Clinton J, et al. Cord blood-derived iNK T cells as a platform for allogeneic CAR T cell therapy[J]. Front Immunol, 2025, 16:1621260.
|
| 11 |
Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities[J]. Nat Rev Clin Oncol, 2017, 15(1):47-62.
|
| 12 |
Molfetta R, Quatrini L, Santoni A, et al. Regulation of NKG2D-dependent NK cell functions:the yin and the yang of receptor endocytosis[J]. Int J Mol Sci, 2017, 18(8):1677.
|
| 13 |
Rascle P, Woolley G, Jost S, et al. NK cell education:physiological and pathological influences[J]. Front Immunol, 2023, 14:1087155.
|
| 14 |
Freud AG, Mundy-Bosse BL, Yu J, et al. The broad spectrum of human natural killer cell diversity[J]. Immunity, 2017, 47(5):820-833.
|
| 15 |
Nath PR, Maclean M, Nagarajan V, et al. Single-cell profiling identifies a CD8bright CD244bright natural killer cell subset that reflects disease activity in HLA-A29-positive birdshot chorioretinopathy[J]. Nat Commun, 2024, 15(1):6443.
|
| 16 |
Luo N, Chen C, Zhou W, et al. Natural killer Cell-mediated antitumor immunity:molecular mechanisms and clinical applications[J]. MedComm (2020), 2025, 6(9):e70387.
|
| 17 |
Chen Y, Lu D, Churov A, Fu R. Research progress on NK cell receptors and their signaling pathways[J]. Mediators Inflamm, 2020, 2020:6437057.
|
| 18 |
Lindsay RS, Melssen MM, Stasiak K, et al. NK cells reduce anergic T cell development in early-stage tumors by promoting myeloid cell maturation[J]. Front Oncol, 2022, 12:1058894.
|
| 19 |
Myers JA, Schirm D, Bendzick L, et al. Balanced engagement of activating and inhibitory receptors mitigates human NK cell exhaustion[J]. JCI Insight, 2022, 7(15):e150079.
|
| 20 |
Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors[J]. N Engl J Med, 2020, 382(6):545-553.
|
| 21 |
Arapović M, Brizić I, Popović B, et al. Intrinsic contribution of perforin to NK-cell homeostasis during mouse cytomegalovirus infection[J]. Front Immunol, 2016, 7:133.
|
| 22 |
Khanal S, Baer A, Hossain MK, et al. Soluble factors released by peripheral blood-derived CAR-NK cells cause bystander myeloid cell activation[J]. Front Immunol, 2024, 15:1519415.
|
| 23 |
Gao H, Liu M, Zhang Y, et al. Multifaceted characterization of the biological and transcriptomic signatures of natural killer cells derived from cord blood and placental blood[J]. Cancer Cell Int, 2022, 22(1): 291.
|
| 24 |
Xie B, Zhang L, Gao J, et al. Decoding the biological properties and transcriptomic landscapes of human natural killer cells derived from bone marrow and umbilical cord blood[J]. Am J Cancer Res, 2023, 13(5):2087-2103.
|
| 25 |
McLaughlin Q, Sojka DK, Kennedy K, et al. Unleashing NK cells for cancer immunotherapy in lung cancer: biologic challenges and clinical advances[J]. J Exp Clin Cancer Res, 2025, 44(1):251.
|
| 26 |
Qin Y, Cui Q, Sun G, et al. Developing enhanced immunotherapy using NKG2A knockout human pluripotent stem cell-derived NK cells[J]. Cell Rep, 2024, 43(11):114867.
|
| 27 |
Terrén I, Orrantia A, Vitallé J, et al. NK cell metabolism and tumor microenvironment[J]. Front Immunol, 2019, 10:2278.
|
| 28 |
Jia H, Yang H, Xiong H, et al. NK cell exhaustion in the tumor microenvironment[J]. Front Immunol, 2023, 14:1303605.
|
| 29 |
Stankovic B, Bjørhovde HAK, Skarshaug R, et al. Immune cell composition in human non-small cell lung cancer[J]. Front Immunol, 2019, 9:3101.
|
| 30 |
Chen P, Gao J, Feng J, et al. The application of iPSCs in tumour immunotherapy[J]. Expert Rev Mol Med, 2025, 27:e26.
|
| 31 |
Cheng M, Chen Y, Xiao W, et al. NK cell-based immunotherapy for malignant diseases[J]. Cell Mol Immunol, 2013, 10(3):230-252.
|
| 32 |
Han B, Song Y, Park J, et al. Nanomaterials to improve cancer immunotherapy based on ex vivo engineered T cells and NK cells[J]. J Control Release, 2022, 343:379-391.
|
| 33 |
Jeanbart L, Swartz MA. Engineering opportunities in cancer immunotherapy[J]. Proc Natl Acad Sci U S A, 2015, 112(47):14467-14472.
|
| 34 |
Davila ML, Kloss CC, Gunset G, et al. CD19 CAR-targeted T cells induce long-term remission and B cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia[J]. PLoS One, 2013, 8(4):e61338.
|
| 35 |
Miller JS, Rooney CM, Curtsinger J, et al. Expansion and homing of adoptively transferred human natural killer cells in immunodeficient mice varies with product preparation and in vivo cytokine administration: implications for clinical therapy[J]. Biol Blood Marrow Transplant, 2014, 20(8):1252-1257.
|
| 36 |
Jaiswal SR, Zaman S, Nedunchezhian M, et al. CD56-enriched donor cell infusion after post-transplantation cyclophosphamide for haploidentical transplantation of advanced myeloid malignancies is associated with prompt reconstitution of mature natural killer cells and regulatory T cells with reduced incidence of acute graft versus host disease:A pilot study[J]. Cytotherapy, 2017, 19(4):531-542.
|
| 37 |
Ikeda H. T-cell adoptive immunotherapy using tumor-infiltrating T cells and genetically engineered TCR-T cells[J]. Int Immunol, 2016, 28(7):349-353.
|
| 38 |
Bahramloo M, Shahabi SA, Kalarestaghi H, et al. CAR-NK cell therapy in AML: current treatment, challenges, and advantage[J]. Biomed Pharmacother, 2024, 177:117024.
|
| 39 |
Kazemi T, Younesi V, Jadidi-Niaragh F, et al. Immunotherapeutic approaches for cancer therapy: an updated review[J]. Artif Cells Nanomed Biotechnol, 2016, 44(3):769-779.
|
| 40 |
Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer:harnessing the T cell response[J]. Nat Rev Immunol, 2012, 12(4):269-281.
|
| 41 |
Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy [J]. Nat Rev Drug Discov. 2020, 19(3):200-218.
|
| 42 |
Lee DA, Denman CJ, Rondon G, et al. Haploidentical natural killer cells infused before allogeneic stem cell transplantation for myeloid malignancies: a phase I trial[J]. Biol Blood Marrow Transplant, 2016, 22(7):1290-1298.
|
| 43 |
Matosevic S. Viral and nonviral engineering of natural killer cells as emerging adoptive cancer immunotherapies[J]. J Immunol Res, 2018, 2018:4054815.
|
| 44 |
Miller JS, Rooney CM, Curtsinger J, et al. Expansion and homing of adoptively transferred human natural killer cells in immunodeficient mice varies with product preparation and in vivo cytokine administration: implications for clinical therapy[J]. Biol Blood Marrow Transplant, 2014, 20(8):1252-1257.
|
| 45 |
Li Y, Sun R. Tumor immunotherapy: new aspects of natural killer cells[J]. Chin J Cancer Res, 2018, 30(2):173-196.
|
| 46 |
Blunt MD, Vallejo Pulido A, Fisher JG, et al. KIR2DS2 expression identifies NK cells with enhanced anticancer activity[J]. J Immunol, 2022, 209(2):379-390.
|
| 47 |
Hiura S, Kuwasaki Y, Nishikawa Y, et al. Selective agonists of KIR and NKG2A to evade missing self response of natural killer cells[J]. Sci Rep, 2025, 15(1):33550.
|
| 48 |
Peng P, Lou Y, Wang S, et al. Activated NK cells reprogram MDSCs via NKG2D-NKG2DL and IFN-γ to modulate antitumor T-cell response after cryo-thermal therapy[J]. J Immunother Cancer, 2022, 10(12):e005769.
|
| 49 |
Suck G, Branch DR, Smyth MJ, et al. KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity[J]. Exp Hematol, 2005, 33(10):1160-1171.
|
| 50 |
Kim Y, Lee DY, Choi JU, et al. Optimized conditions for gene transduction into primary immune cells using viral vectors[J]. Sci Rep, 2023, 13(1):12365.
|
| 51 |
Caligiuri MA. Human natural killer cells[J]. Blood, 2008, 112(3):461-469.
|
| 52 |
Tomaz D, Pereira PM, Guerra N, et al. Nanoscale colocalization of NK cell activating and inhibitory receptors controls signal integration[J]. Front Immunol, 2022, 13:868496.
|
| 53 |
Dhar P, Wu JD. NKG2D and its ligands in cancer[J]. Curr Opin Immunol, 2018, 51:55-61.
|
| 54 |
Wu L, Zhang C, Zhang J. HMBOX1 negatively regulates NK cell functions by suppressing the NKG2D/DAP10 signaling pathway[J]. Cell Mol Immunol, 2011, 8(5):433-440.
|
| 55 |
Bjorkstrom NK, Ljunggren HG, Michaelsson J. Emerging insights into natural killer cells in human peripheral tissues[J]. Nat Rev Immunol, 2016, 16(5):310-320.
|
| 56 |
Sun C, Sun H, Zhang C, et al. NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma[J]. Cell Mol Immunol, 2014, 12(3):292-302.
|
| 57 |
Habif G, Crinier A, André P, et al. Targeting natural killer cells in solid tumors[J]. Cell Mol Immunol, 2019, 16(5):415-422.
|
| 58 |
Zhang C, Hu Y, Shi C. Targeting natural killer cells for tumor immunotherapy[J]. Front Immunol, 2020, 11:60.
|
| 59 |
Castriconi R, Cantoni C, Della Chiesa M, et al. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells[J]. Proc Natl Acad Sci U S A, 2003, 100(7):4120-4125.
|
| 60 |
Cekic C, Day YJ, Sag D, et al. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment[J]. Cancer Res, 2014, 74(24):7250-7259.
|
| 61 |
Li H, Han Y, Guo Q, et al. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1[J]. J Immunol, 2009, 182(1):240-249.
|
| 62 |
Nayyar G, Chu Y, Cairo MS. Overcoming resistance to natural killer cell based immunotherapies for solid tumors[J]. Front Oncol, 2019, 9:51.
|
| 63 |
Kim KS, Kim DH, Kim DH. Recent advances to augment NK cell cancer immunotherapy using nanoparticles[J]. Pharmaceutics, 2021, 13(4):525.
|
| 64 |
Shin MH, Kim J, Lim SA, et al. NK cell-based immunotherapies in cancer[J]. Immune Netw, 2020, 20(2):e14.
|
| 65 |
Liu S, Galat V, Galat Y, et al. NK cell-based cancer immunotherapy: from basic biology to clinical development[J]. J Hematol Oncol, 2021, 14(1):7.
|
| 66 |
Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges[J]. Cell Stem Cell, 2020, 27(4):523-531.
|
| 67 |
Bleeker EA, de Jong WH, Geertsma RE, et al. Considerations on the EU definition of a nanomaterial:science to support policy making[J]. Regul Toxicol Pharmacol, 2013, 65(1):119-125.
|
| 68 |
Feng X, Xu W, Li Z, et al. Immunomodulatory nanosystems[J]. Adv Sci, 2019, 6(17):1900101.
|
| 69 |
Shukla S, Steinmetz NF. Emerging nanotechnologies for cancer immunotherapy[J]. Exp Biol Med, 2016, 241(10):1116-1126.
|
| 70 |
Wei P, Moodera JS. One compound with two distinct topological states[J]. Nat Mater, 2020, 19(5):481-482.
|
| 71 |
Irvine DJ, Dane EL. Enhancing cancer immunotherapy with nanomedicine[J]. Nat Rev Immunol, 2020, 20(5):321-334.
|
| 72 |
Le Saux G, Schvartzman M. Advanced materials and devices for the regulation and study of NK cells[J]. Int J Mol Sci, 2019, 20(3):646.
|
| 73 |
Owensiii D, Peppas N. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles[J]. Int J Pharm, 2006, 307(1):93-102.
|
| 74 |
Toy R, Peiris PM, Ghaghada KB, et al. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles[J]. Nanomedicine (Lond), 2014, 9(1):121-134.
|
| 75 |
Yoo JW, Mitragotri S. Polymer particles that switch shape in response to a stimulus[J]. Proc Natl Acad Sci U S A, 2010, 107(25):11205-11210.
|
| 76 |
Lasic DD, Papahadjopoulos D. Liposomes revisited[J]. Science, 1995, 267(5202):1275-1276.
|
| 77 |
Delcassian D, Depoil D, Rudnicka D, et al. Nanoscale ligand spacing influences receptor triggering in T cells and NK cells[J]. Nano Lett, 2013, 13(1):5608-5614.
|
| 78 |
Mikelez-Alonso I, Magadán S, González-Fernández á, et al. Natural killer (NK) cell-based immunotherapies and the many faces of NK cell memory: a look into how nanoparticles enhance NK cell activity[J]. Adv Drug Deliv Rev, 2021, 176:113860.
|
| 79 |
Daka A, Peer D. RNAi-based nanomedicines for targeted personalized therapy[J]. Adv Drug Deliv Rev, 2012, 64(13):1508-1521.
|
| 80 |
Mittler RS, Foell J, McCausland M, et al. Anti-CD137 antibodies in the treatment of autoimmune disease and Cancer[J]. Immunol Res, 2004, 29(1-3):197-208.
|
| 81 |
Cheuk ATC, Mufti GJ, Guinn B-a. Role of 4-1BB:4-1BB ligand in cancer immunotherapy[J]. Cancer Gene Ther, 2003, 11(3):215-226.
|
| 82 |
Liu Z, Jiang W, Nam J, et al. Immunomodulating nanomedicine for cancer therapy[J]. Nano Lett, 2018, 18(11):6655-6659.
|
| 83 |
Liu C, Lai H, Chen T. Boosting natural killer cell-B based cancer immunotherapy with selenocystine/transforming growth factor-beta inhibitor-encapsulated nanoemulsion[J]. ACS Nano, 2020, 14(9):11067-11082.
|
| 84 |
Tan L, Han S, Ding S, et al. Chitosan nanoparticle-based delivery of fused NKG2D&ndash: IL-21 gene suppresses colon cancer growth in mice[J]. Int J Nanomedicine, 2017, 12:3095-3107.
|
| 85 |
Pan J, Xu Y, Wu Q, et al. Mild magnetic hyperthermia-activated innate immunity for liver cancer therapy[J]. J Am Chem Soc, 2021, 143(21):8116-8128.
|
| 86 |
Zhang SC, Hu ZQ, Long JH, et al. Clinical implications of tumor-infiltrating immune cells in breast cancer[J]. J Cancer, 2019, 10(24): 6175-6184.
|
| 87 |
Ran Gh, Lin Yq, Tian L, et al. Natural killer cell homing and trafficking in tissues and tumors:from biology to application[J]. Signal Transduct Target Ther, 2022, 7(1):205.
|
| 88 |
Park W, Gordon AC, Cho S, et al. Immunomodulatory magnetic microspheres for augmenting tumor-specific infiltration of natural killer (NK) cells[J]. ACS Appl Mater Interfaces, 2017, 9(16):13819-13824.
|
| 89 |
Burga RA, Khan DH, Agrawal N, et al. Designing magnetically responsive biohybrids composed of cord blood-derived natural killer cells and iron oxide nanoparticles[J]. Bioconjug Chem, 2019, 30(30):552-560.
|
| 90 |
Gasparri AM, Sacchi A, Basso V, et al. Boosting interleukin-12 antitumor activity and synergism with immunotherapy by targeted delivery with isoDGR-Tagged nanogold[J]. Small. 2019, 15(45): e1903462
|
| 91 |
Monty MA, Islam MA, Nan X, et al. Emerging role of RNA interference in immune cells engineering and its therapeutic synergism in immunotherapy[J]. Br J Pharmacol, 2021, 178(8):1741-1755.
|
| 92 |
Biber G, Sabag B, Raiff A, et al. Modulation of intrinsic inhibitory checkpoints using nano-carriers to unleash NK cell activity[J]. EMBO Mol Med, 2022, 14(1):e14073.
|
| 93 |
Riggan L, Shah S, O'Sullivan TE. Arrested development: suppression of NK cell function in the tumor microenvironment[J]. Clin Transl Immunology, 2021, 10(1):e1238.
|
| 94 |
Melaiu O, Lucarini V, Cifaldi L, et al. Influence of the tumor microenvironment on NK cell function in solid tumors[J]. Front Immunol, 2020, 10:3038.
|
| 95 |
Hu Z, Xu X, Wei H. The adverse impact of tumor microenvironment on NK-cell[J]. Front Immunol, 2021, 12:633361.
|
| 96 |
Buabeid MA, Arafa EA, Murtaza G. Emerging prospects for nanoparticle-enabled cancer immunotherapy[J]. J Immunol Res, 2020, 2020:9624532.
|
| 97 |
Kim KS, Han JH, Park JH, et al. Multifunctional nanoparticles for genetic engineering and bioimaging of natural killer (NK) cell therapeutics[J]. Biomaterials, 2019, 221:119418.
|
| 98 |
Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer[J]. Nat Rev Drug Discov, 2008, 7(9):771-782.
|
| 99 |
Baiu DC, Artz NS, McElreath MR, et al. High specificity targeting and detection of human neuroblastoma using multifunctional anti-GD2 iron-oxide nanoparticles[J]. Nanomedicine, 2015, 10(19):2973-2988.
|
| 100 |
Ahmed M, Cheung NK. Engineering anti-GD2 monoclonal antibodies for cancer immunotherapy[J]. FEBS Letters, 2014, 588(2):288-297.
|
| 101 |
Jiao P, Otto M, Geng Q, et al. Enhancing both CT imaging and natural killer cell-mediated cancer cell killing by a GD2-targeting nanoconstruct[J]. J Mater Chem B, 2016, 4(3):513-520.
|
| 102 |
Zheng K, Setyawati MI, Leong DT, et al. Antimicrobial Gold Nanoclusters[J]. ACS Nano, 2017, 11(7):6904-6910.
|
| 103 |
Foy SP, Manthe RL, Foy ST, et al. Optical imaging and magnetic field targeting of magnetic nanoparticles in tumors[J]. ACS Nano, 2010, 4(9):5217-5224.
|
| 104 |
Nowak-Jary J, Machnicka B. In vivo biodistribution and clearance of magnetic iron oxide nanoparticles for medical applications[J]. Int J Nanomedicine, 2023, 18:4067-4100.
|
| 105 |
Wu L, Zhang F, Wei Z, et al. Magnetic delivery of Fe3O4@polydopamine nanoparticle-loaded natural killer cells suggest a promising anticancer treatment[J]. Biomater Sci, 2018, 6(10):2714-2725.
|
| 106 |
Loftus C, Saeed M, Davis DM, et al. Activation of human natural killer cells by graphene oxide-templated antibody nanoclusters[J]. Nano Lett, 2018, 18(5):3282-3289.
|
| 107 |
Baek A, Baek YM, et al. Polyethylene glycol-engrafted graphene oxide as biocompatible materials for peptide nucleic acid delivery into cells[J]. Bioconjug Chem, 2018, 29(2):528-537.
|
| 108 |
Grasso G, Torregrossa F, Noto M, et al. MR-guided focused ultrasound-induced blood-brain barrier opening for brain metastasis: a review[J]. Neurosurg Focus, 2023, 55(2):E11.
|
| 109 |
Alkins R, Burgess A, Kerbel R, et al. Early treatment of HER2-amplified brain tumors with targeted NK-92 cells and focused ultrasound improves survival[J]. Neuro Oncol, 2016, 18(7):974-981.
|
| 110 |
Su Z, Wang X, Zheng L, et al. MRI-guided interventional natural killer cell delivery for liver tumor treatment[J]. Cancer Med, 2018, 7(5):1860-1869.
|
| 111 |
Sheu AY, Zhang Z, Omary RA, et al. MRI-monitored transcatheter intra-arterial delivery of SPIO-labeled natural killer cells to hepatocellular carcinoma[J]. Invest Radiol, 2013, 48(6):492-499.
|
| 112 |
Srivastava S, Lundqvist A, Childs RW. Natural killer cell immunotherapy for cancer: a new hope[J]. Cytotherapy, 2008, 10(8): 775-783.
|
| 113 |
Shah A, Dobrovolskaia MA. Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: therapeutic benefits, toxicity, mechanistic insights, and translational considerations[J]. Nanomedicine, 2018, 14(3):977-990.
|
| 114 |
Zhang X, Xu F, Hu X, et al. Zinc mitigates copper toxicity in Crassostrea gigas by regulating metal homeostasis, oxidative stress, and immune responses[J]. Mar Environ Res, 2025, 211:107393.
|
| 115 |
Lee AR, Lee SJ, Lee M, et al. Editor's Highlight: a genome-wide screening of target genes against silver nanoparticles in fission yeast[J]. Toxicol Sci, 2018, 161(1):171-185.
|
| 116 |
Pandey A, Mishra AK. Immunomodulation, toxicity, and therapeutic potential of nanoparticles[J]. BioTech (Basel), 2022, 11(3):42.
|
| 117 |
Müller L, Steiner SK, Rodriguez-Lorenzo L, et al. Exposure to silver nanoparticles affects viability and function of natural killer cells, mostly via the release of ions[J]. Cell Biol Toxicol, 2018, 34(3):167-176.
|
| 118 |
Müller L, Steiner SK, Rodriguez-Lorenzo L, et al. Exposure to silver nanoparticles affects viability and function of natural killer cells, mostly via the release of ions[J]. Cell Biol Toxicol, 2018, 34(3):167-176.
|
| 119 |
Wang P, Lu YQ. Ferroptosis: a critical moderator in the life cycle of immune cells[J]. Front Immunol, 2022, 13:877634.
|
| 120 |
Tang H, Xu M, Luo J, et al. Liver toxicity assessments in rats following sub-chronic oral exposure to copper nanoparticles[J]. Environ Sci Eur, 2019, 31:30.
|
| 121 |
Yao Y, Zang Y, Qu J, et al. The toxicity of metallic nanoparticles on liver: the subcellular damages, mechanisms, and outcomes[J]. Int J Nanomedicine, 2019, 14:8787-8804.
|
| 122 |
Jindal A, Sarkar S, Alam A. Nanomaterials-mediated immunomodulation for cancer therapeutics[J]. Front Chem, 2021, 9: 629635.
|