1 |
Diesch-Furlanetto T, Gabriel M, Zajac-Spychala O, et al. Late effects after haematopoietic stem cell transplantation in aLL, long-term follow-up and transition:a step into adult life[J]. Front Pediatr, 2021, 9:773895. doi: 10.3389/fped.2021.773895.
|
2 |
Saha S, Roy P, Corbitt C, et al. Application of stem cell therapy for infertility[J]. Cells, 2021, 10(7):1613. doi: 10.3390/cells10071613.
|
3 |
Cosgrove CM, Salani R. Ovarian effects of radiation and cytotoxic chemotherapy damage[J]. Best Pract Res Clin Obstet Gynaecol, 2019, 55:37-48.
|
4 |
Nguyen QN, Zerafa N, Liew SH, et al. Cisplatin-and cyclophosphamide-induced primordial follicle depletion is caused by direct damage to oocytes[J]. Mol Hum Reprod, 2019, 25(8):433-444.
|
5 |
Takahashi A, Yousif A, Hong L, et al. Premature ovarian insufficiency: pathogenesis and therapeutic potential of mesenchymal stem cell[J]. J Mol Med (Berl), 2021, 99(5):637-650.
|
6 |
孙芳,韦伟. GnRH激动剂和经血源性干细胞联合治疗对小鼠卵巢功能的影响[J]. 南方医科大学学报, 2021, 41(12):1850-1856.
|
7 |
Hildebrandt GC, Chao N. Endothelial cell function and endothelial-related disorders following haematopoietic cell transplantation[J]. Br J Haematol, 2020, 190(4):508-519.
|
8 |
Guo Y, Xue L, Tang W, et al. Ovarian microenvironment:challenges and opportunities in protecting against chemotherapy-associated ovarian damage[J]. Hum Reprod Update, 2024, 30(5):614-647.
|
9 |
Mehta RS, Saliba RM, Ghanem S, et al. Haploidentical versus matched unrelated versus matched sibling donor hematopoietic cell transplantation with post-transplantation cyclophosphamide[J]. Transplant Cell Ther, 2022, 28(7):395.e11. doi: 10.1016/j.jtct.2022.04.020.
|
10 |
Shimoji S, Hashimoto D, Tsujigiwa H, et al. Graft-versus-host disease targets ovary and causes female infertility in mice[J]. Blood, 2017, 129(9):1216-1225.
|
11 |
De Koning C, Nierkens S, Boelens JJ. Strategies before, during,and after hematopoietic cell transplantation to improve T-cell immune reconstitution[J]. Blood, 2016, 128(23):2607-2615.
|
12 |
Zhang S, Liu Q, Chang M, et al. Chemotherapy impairs ovarian function through excessive ROS-induced ferroptosis[J]. Cell Death Dis, 2023, 14(5):340. doi: 10.1038/s41419-023-05859-0.
|
13 |
Lu X, Bao H, Cui L, et al. hUMSC transplantation restores ovarian function in POI rats by inhibiting autophagy of theca-interstitial cells via the AMPK/mTOR signaling pathway[J]. Stem Cell Res Ther, 2020, 11(1):268. doi: 10.1186/s13287-020-01784-7.
|
14 |
Shi L, Zhang Z, Deng M, et al. Biological mechanisms and applied prospects of mesenchymal stem cells in premature ovarian failure[J]. Med, 2022, 101(32):e30013. doi: 10.1097/MD.0000000000030013.
|
15 |
Umer A, Khan N, Greene DL, et al. The therapeutic potential of human umbilical cord derived mesenchymal stem cells for the treatment of premature ovarian failure[J]. Stem Cell Rev Rep, 2023, 19(3):651-666.
|
16 |
Yuan Z, Zhang Y, He X, et al. Engineering mesenchymal stem cells for premature ovarian failure:overcoming challenges and innovating therapeutic strategies[J]. Theranostics, 2024, 14(17):6487-6515.
|
17 |
Garg K, Zilate S. Umbilical cord-derived mesenchymal stem cells for the treatment of infertility due to premature ovarian failure[J]. Cureus, 2022, 14(10):e30529. doi: 10.7759/cureus.30529.
|
18 |
Zheng Q, Fu X, Jiang J, et al. Umbilical cord mesenchymal stem cell transplantation prevents chemotherapy-induced ovarian failure via the NGF/TrkA pathway in rats[J]. Biomed Res Int, 2019, 2019:6539294. doi: 10.1155/2019/6539294.
|
19 |
Yang Y, Lei L, Wang S, et al. Transplantation of umbilical cord-derived mesenchymal stem cells on a collagen scaffold improves ovarian function in a premature ovarian failure model of mice[J]. In Vitro Cell Dev Biol Anim, 2019, 55(4):302-311.
|
20 |
Li Y, Zhang H, Cai C, et al. Microfluidic encapsulation of exosomes derived from lipopolysaccharide-treated mesenchymal stem cells in hyaluronic acid methacryloyl to restore ovarian function in mice[J]. Adv Healthcare Mater, 2024, 13(6):2303068. doi: 10.1002/adhm.202303068.
|
21 |
Cui L, Bao H, Liu Z, et al. hUMSCs regulate the differentiation of ovarian stromal cells via TGF-β1/Smad3 signaling pathway to inhibit ovarian fibrosis to repair ovarian function in POI rats[J]. Stem Cell Res Ther, 2020, 11(1):386. doi: 10.1186/s13287-020-01904-3.
|
22 |
Lu X, Cui J, Cui L, et al. The effects of human umbilical cord-derived mesenchymal stem cell transplantation on endometrial receptivity are associated with Th1/Th2 balance change and uNK cell expression of uterine in autoimmune premature ovarian failure mice[J]. Stem Cell Res Ther, 2019, 10(1):214. doi: 10.1186/s13287-019-1313-y.
|
23 |
Yin N, Wu C, Qiu J, et al. Protective properties of heme oxygenase-1 expressed in umbilical cord mesenchymal stem cells help restore the ovarian function of premature ovarian failure mice through activating the JNK/Bcl-2 signal pathway-regulated autophagy and upregulating the circulating of CD8 + CD28 − T cells[J]. Stem Cell Res Ther, 2020, 11(1):49. doi: 10.1186/s13287-019-1537-x.
|
24 |
谭丽,毛熙光,钟影, 等. 人脐带间充质干细胞移植修复大鼠的卵巢早衰[J]. 中国比较医学杂志, 2019, 29(10):85-91.
|
25 |
Dai W, Yang H, Xu B, et al. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) alleviate excessive autophagy of ovarian granular cells through VEGFA/PI3K/AKT/mTOR pathway in premature ovarian failure rat model[J]. J Ovarian Res, 2023, 16(1):198. doi: 10.1186/s13048-023-01278-z.
|
26 |
He J, Ao C, Li M, et al. Clusterin-carrying extracellular vesicles derived from human umbilical cord mesenchymal stem cells restore the ovarian function of premature ovarian failure mice through activating the PI3K/AKT pathway[J]. Stem Cell Res Ther, 2024, 15(1):300. doi: 10.1186/s13287-024-03926-7.
|
27 |
Regmi S, Pathak S, Kim J O, et al. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: challenges, opportunities, and future perspectives[J]. Eur J Cell Biol, 2019, 98(5-8):151041. doi: 10.1016/j.ejcb.2019.04.002.
|
28 |
Jiao W, Mi X, Yang Y, et al. Mesenchymal stem cells combined with autocrosslinked hyaluronic acid improve mouse ovarian function by activating the PI3K-AKT pathway in a paracrine manner[J]. Stem Cell Res Ther, 2022, 13(1):49. doi: 10.1186/s13287-022-02724-3.
|
29 |
Dai W, Yang H, Xu B, et al. 3D hUC-MSC spheroids exhibit superior resistance to autophagy and apoptosis of granulosa cells in POF rat model[J]. Reprod, 2024, 168(2):e230496. doi: 10.1530/REP-23-0496.
|
30 |
Qu Q, Liu L, Wang L, et al. Exosomes derived from hypoxic mesenchymal stem cells restore ovarian function by enhancing angiogenesis[J]. Stem Cell Res Ther, 2024, 15(1):496. doi: 10.1186/s13287-024-04111-6.
|
31 |
Xiong Y, Si Y, Quan R, et al. hUMSCs restore ovarian function in POI mice by regulating GSK3β-mediated mitochondrial dynamic imbalances in theca cells[J]. Sci Rep, 2024, 14(1):19008. doi: 10.1038/s41598-024-69381-9.
|
32 |
Cai J, Liang X, Sun Y, et al. Beneficial effects of human umbilical cord mesenchymal stem cell (HUCMSC) transplantation on cyclophosphamide (CTX)-induced premature ovarian failure (POF) in Tibetan miniature pigs[J]. Transpl Immunol, 2024, 84:102051. doi: 10.1016/j.trim.2024.102051.
|
33 |
Yan L, Wu Y, Li L, et al. Clinical analysis of human umbilical cord mesenchymal stem cell allotransplantation in patients with premature ovarian insufficiency[J]. Cell Prolif, 2020, 53(12):e12938. doi: 10.1111/cpr.12938.
|
34 |
Igboeli P, El Andaloussi A, Sheikh U, et al. Intraovarian injection of autologous human mesenchymal stem cells increases estrogen production and reduces menopausal symptoms in women with premature ovarian failure:two case reports and a review of the literature[J]. J Med Case Rep, 2020, 14(1):108. doi: 10.1186/s13256-020-02426-5.
|
35 |
Ding L, Yan G, Wang B, et al. Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility[J]. Sci China Life Sci, 2018, 61(12):1554-1565.
|
36 |
Tian C, Ye L, Zhao X, et al. Umbilical cord mesenchymal stem cells: a novel approach to intervention of ovarian ageing[J]. Regen Ther, 2024, 26:590-598.
|
37 |
Wang L, Mei Q, Xie Q, et al. A comparative study of mesenchymal stem cells transplantation approach to antagonize age-associated ovarian hypofunction with consideration of safety and efficiency[J]. J Adv Res, 2021, 38:245-259.
|
38 |
Pei W, Fu L, Guo W, et al. Efficacy and safety of mesenchymal stem cell therapy for ovarian ageing in a mouse model[J]. Stem Cell Res Ther, 2024, 15(1):96. doi: 10.1186/s13287-024-03698-0.
|
39 |
Zhou T, Yuan Z, Weng J, et al. Challenges and advances in clinical applications of mesenchymal stromal cells[J]. J Hematol Oncol, 2021, 14(1):24. doi: 10.1186/s13045-021-01037-x.
|
40 |
Li J, Wu Z, Zhao L, et al. The heterogeneity of mesenchymal stem cells:an important issue to be addressed in cell therapy[J]. Stem Cell Res Ther, 2023, 14(1):381. doi: 10.1186/s13287-023-03587-y.
|
41 |
Markov V, Kusumi K, Tadesse MG, et al. Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles[J]. Stem Cells Dev, 2007, 16(1):53-73.
|
42 |
Zhao Q, Zhang L, Wei Y, et al. Systematic comparison of hUC-MSCs at various passages reveals the variations of signatures and therapeutic effect on acute graft-versus-host disease[J]. Stem Cell Res Ther, 2019, 10(1):354. doi: 10.1186/s13287-019-1478-4.
|
43 |
Yoon SY. Mesenchymal stem cells for restoration of ovarian function[J]. Clin Exp Reprod Med, 2019, 46(1):1-7.
|