1 |
Fan Y, Goh ELK, Chan JKY. Neural cells for neurodegenerative diseases in clinical trials[J]. Stem Cells Transl Med, 2023, 12(8):510-526.
|
2 |
Wang S, He Q, Qu Y, et al. Emerging strategies for nerve repair and regeneration in ischemic stroke: neural stem cell therapy[J]. Neural Regen Res, 2024, 19(11):2430-2443.
|
3 |
Matsumura H, Marushima A, Ishikawa H, et al. Induced neural cells from human dental pulp ameliorate functional recovery in a murine model of cerebral infarction[J]. Stem Cell Rev Rep, 2022, 18(2):595-608.
|
4 |
Kalogeropoulou A, Mougkogianni M, Iliadou M, et al. Intrinsic neural stem cell properties define brain hypersensitivity to genotoxic stress[J]. Stem Cell Reports, 2022, 17(6):1395-1410.
|
5 |
Zhang Q, Li J, An W, et al. Neural stem cell secretome and its role in the treatment of neurodegenerative disorders[J]. J Integr Neurosci, 2020, 19(1):179-185.
|
6 |
ArfèS, Karagyozova T, Forest A, et al. H3.3 deposition counteracts the replication-dependent enrichment of H3.1 at chromocenters in embryonic stem cells[J]. Nat Commun, 2025, 16(1):5138.
|
7 |
Li P, Gao L, Cui T, et al. Cops5 safeguards genomic stability of embryonic stem cells through regulating cellular metabolism and DNA repair[J]. Proc Natl Acad Sci U S A, 2020, 117(5):2519-2525.
|
8 |
Hahn WC, Meyerson M. Telomerase activation, cellular immortalization and cancer[J]. Ann Med, 33(2):123-129.
|
9 |
Maiani E, Milletti G, Cecconi F. The pro-autophagic protein AMBRA1 coordinates cell cycle progression by regulating CCND (cyclin D) stability[J]. Autophagy, 2021, 17(12):4506-4508.
|
10 |
Liu M, Zhang Y, Jian Y, et al. The regulations of telomerase reverse transcriptase (TERT) in cancer[J]. Cell Death Dis, 2024, 15(1):90.
|
11 |
Saretzki G. Telomerase and neurons: an unusual relationship[J]. Neural Regen Res, 2022, 17(11):2364-2367.
|
12 |
Liu MY, Fan Y, Ni N, et al. TERT mediates the U-shape of glucocorticoids effects in modulation of hippocampal neural stem cells and associated brain function[J]. CNS Neurosci Ther, 2024, 30(2):e14577.
|
13 |
Rosen J, Jakobs P, Ale-Agha N, et al. Non-canonical functions of telomerase reverse transcriptase-impact on redox homeostasis[J]. Redox Biol, 2020, 34:101543.
|
14 |
Yu X, Liu MM, Zheng CY, et al. Telomerase reverse transcriptase and neurodegenerative diseases[J]. Front Immunol, 2023, 14:1165632.
|
15 |
Sze KM, Ho DW, Chiu YT, et al. Hepatitis B virus-telomerase reverse transcriptase promoter integration harnesses host ELF4, resulting in telomerase reverse transcriptase gene transcription in hepatocellular carcinoma[J]. Hepatology, 2021, 73(1):23-40.
|
16 |
Liu G, Cheng G, Zhang Y, et al. Pyridoxine regulates hair follicle development via the PI3K/Akt, Wnt and Notch signalling pathways in rex rabbits[J]. Anim Nutr, 2021, 7(4):1162-1172.
|
17 |
He C, Li Y, Gan L, et al. Notch signaling regulates Th17 cells differentiation through PI3K/AKT/mTORC1 pathway and involves in the thyroid injury of autoimmune thyroiditis[J]. J Endocrinol Invest, 2024, 47(8):1971-1986.
|
18 |
Hou G, Zhao Q, Zhang M, et al. LSD1 regulates Notch and PI3K/Akt/mTOR pathways through binding the promoter regions of Notch target genes in esophageal squamous cell carcinoma[J]. Onco Targets Ther, 2019, 12:5215-5225.
|
19 |
Cheng YY, Ding YX, Bian GL, et al. Reactive astrocytes display pro-inflammatory adaptability with modulation of Notch-PI3K-AKT signaling pathway under inflammatory stimulation[J]. Neuroscience, 2020, 440:130-145.
|
20 |
Zhong W, Xu L, Jiang G, et al. Sodium tanshinone IIA sulfonate promotes proliferation and differentiation of endogenous neural stem cells to repair rat spinal cord injury via the Notch pathway[J]. J Transl Med, 2025, 23(1):367.
|
21 |
Man KH, Wu Y, Gao Z, et al. SOX10 mediates glioblastoma cell-state plasticity[J]. EMBO Rep, 2024, 25(11):5113-5140.
|
22 |
Zhao Z, Fowle H, Valentine H, et al. Immortalization of human primary prostate epithelial cells via CRISPR inactivation of the CDKN2A locus and expression of telomerase[J]. Prostate Cancer Prostatic Dis, 2021,24(1):233-243.
|
23 |
钟周玥,于思远,葛胜祥. 人B细胞永生化研究进展[J]. 生物工程学报, 2021, 37(1):30-39.
|
24 |
Sekine A, Yasunaga G, Kumamoto S, et al. Characterization of common minke whale (balaenoptera acutorostrata) cell lines immortalized with the expression of cell cycle regulators[J]. Adv Biol (Weinh), 2024, 8(3):e2300227.
|
25 |
Schwarz ER, Franco M, Busse N, et al. Quo Vadis, Dottore? Religious, philosophical and medical perspectives on the quest for immortality[J]. J Relig Health, 2022, 61(4):3177-3191.
|
26 |
Fus-Kujawa A, Mendrek B, Trybus A, et al. Potential of induced pluripotent stem cells for use in gene therapy: history, molecular bases, and medical perspectives[J]. Biomolecules, 2021, 11(5):699.
|
27 |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
|
28 |
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
|
29 |
Horisawa K, Suzuki A. Direct cell-fate conversion of somatic cells: toward regenerative medicine and industries[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2020, 96(4):131-158.
|
30 |
Thier M, Wörsdörfer P, Lakes YB, et al. Direct conversion of fibroblasts into stably expandable neural stem cells[J]. Cell Stem Cell, 2012, 10(4):473-479.
|
31 |
Ahuja D, Sáenz-Robles MT, et al. SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation[J]. Oncogene, 2005, 24(52):7729-7745.
|
32 |
Li Y, Darabi R. Role of epigenetics in cellular reprogramming; from iPSCs to disease modeling and cell therapy[J]. J Cell Biochem, 2022, 123(2):147-154.
|
33 |
Guo T, Wei Q. Cell reprogramming techniques: contributions to cancer therapy[J]. Cell Reprogram, 2023, 25(4):142-153.
|
34 |
Mochnacky F, Bul'kova V, Holota R, et al. "Neural stem cells puzzle" missing piece: telomerase reverse transcriptase expression patterns during nervous system ontogenesis in rats[J]. J Physiol Pharmacol, 2021, 72(6). Epub 2022 Apr 2.
|
35 |
Almengló C, González-Mosquera T, Caamaño P, et al. Immortalization of a cell line with neural stem cell characteristics derived from mouse embryo brain[J]. Dev Dyn, 2020, 249(1):112-124.
|
36 |
Bonnay F, Veloso A, Steinmann V, et al. Oxidative metabolism drives immortalization of neural stem cells during tumorigenesis[J]. Cell, 2020, 182(6):1490-1507.
|
37 |
Garone C, De Giorgio F, Carli S. Mitochondrial metabolism in neural stem cells and implications for neurodevelopmental and neurodegenerative diseases[J]. J Transl Med, 2024, 22(1):238.
|
38 |
Bonnay F, Veloso A, Steinmann V, et al. Oxidative metabolism drives immortalization of neural stem cells during tumorigenesis[J]. Cell, 2020, 182(6):1490-1507.e19.
|
39 |
Zheng X, Boyer L, Jin M, et al. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation[J]. Elife, 2016, 5:e13374.
|
40 |
Carracedo A. Metabolism in the tumor cell and beyond[J]. Mol Oncol, 2023, 17(6):921-924.
|
41 |
Mooney R, Abidi W, Batalla-Covello J, et al. Allogeneic human neural stem cells for improved therapeutic delivery to peritoneal ovarian cancer[J]. Stem Cell Res Ther, 2021, 12(1):205.
|
42 |
Mi R, Luo Y, Cai J, et al. Immortalized neural stem cells differ from nonimmortalized cortical neurospheres and cerebellar granule cell progenitors[J]. Exp Neurol, 2005, 194(2):301-319.
|
43 |
Wei N, Sun Z, Yu J, et al. Immunological responses to transgene-modified neural stem cells after transplantation[J]. Front Immunol, 2021, 12:697203.
|
44 |
Guan T, Guo Y, Zhou T, et al. Oxidized SOD1 accelerates cellular senescence in neural stem cells[J]. Stem Cell Res Ther, 2024, 15(1):55.
|
45 |
Apostolou S, Donega V. Embracing the heterogeneity of neural stem cells in the subventricular zone[J]. Stem Cell Reports, 2025, 12:102452.
|
46 |
Ruetz TJ, Pogson AN, Kashiwagi CM, et al. CRISPR-Cas9 screens reveal regulators of ageing in neural stem cells[J]. Nature, 2024, 634(8036):1150-1159.
|
47 |
Tamura R, Miyoshi H, Imaizumi K, et al. Gene therapy using genome-edited iPS cells for targeting malignant glioma[J]. Bioeng Transl Med, 2022, 8(5):e10406.
|
48 |
Gao M, Dong Q, Yang Z, et al. Long non-coding RNA H19 regulates neurogenesis of induced neural stem cells in a mouse model of closed head injury[J]. Neural Regen Res, 2024, 19(4):872-880.
|
49 |
Andreotti JP, Silva WN, Costa AC, et al. Neural stem cell niche heterogeneity[J]. Semin Cell Dev Biol, 2019, 95:42-53.
|
50 |
Blurton-Jones M, Kitazawa M, Martinez-Coria H, et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease[J]. Proc Natl Acad Sci, 2009, 106(32):13594-13599.
|
51 |
李志方,唐军,李露斯. C17.2神经干细胞移植Aβ1-40损伤大鼠海马后的分化及对学习记忆的改善[J]. 第三军医大学学报, 2008, 30(7):595-599.
|
52 |
Jiang S, Wang H, Yang C, et al. Phase 1 study of safety and preliminary efficacy of intranasal transplantation of human neural stem cells (ANGE-S003) in Parkinson’s disease[J]. Neurol Neurosurg Psychiatry, 2024, 95(12):1102-1111.
|
53 |
Hwang DH, Lee HJ, Park IH, et al. Intrathecal transplantation of human neural stem cells overexpressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice[J]. Gene Ther, 2009, 16(10):1234-1244.
|
54 |
Mazzini L, Gelati M, Profico DC, et al. Results from phase I clinical trial with intraspinal injection of neural stem cells in amyotrophic lateral sclerosis: a long-term outcome[J]. Stem Cells Transl Med, 2019, 8(9):887-897.
|
55 |
Szelenberger R, Kostka J, Saluk-Bijak J, et al. Pharmacological interventions and rehabilitation approach for enhancing brain self-repair and stroke recovery[J]. Curr Neuropharmacol, 2020, 18(1):51-64.
|
56 |
Regenhardt RW, Takase H, Lo EH, et al. Translating concepts of neural repair after stroke: Structural and functional targets for recovery[J]. Restor Neurol Neurosci, 2020, 38(1):67-92.
|
57 |
Liu XY, Feng YH, Feng QB, et al. Low-temperature 3D-printed collagen/chitosan scaffolds loaded with exosomes derived from neural stem cells pretreated with insulin growth factor-1 enhance neural regeneration after traumatic brain injury[J]. Neural Regen Res, 2023, 18(9):1990-1998.
|
58 |
Xia B, Chen G, Zou Y, et al. Low-intensity pulsed ultrasound combination with induced pluripotent stem cells-derived neural crest stem cells and growth differentiation factor 5 promotes sciatic nerve regeneration and functional recovery[J]. J Tissue Eng Regen Med, 2019, 13(4) :625-636.
|
59 |
Zhu Y, Liu R, Zhao X, et al. VEGF overexpression in transplanted NSCs promote recovery of neurological function in rats with cerebral ischemia by modulating the Wnt signal transduction pathway[J]. Neurosci Lett, 2024, 824:137668.
|
60 |
Zhang G, Li Y, Reuss JL, et al. Stable intracerebral transplantation of neural stem cells for the treatment of paralysis due to ischemic stroke[J]. Stem Cells Transl Med, 2019, 8(10):999-1007.
|
61 |
Xue YZ, Li XX, Li L, et al. Curative effect and safety of intrathecal transplantation of neural stem cells for the treatment of cerebral hemorrhage[J]. Genet Mol Res, 2014, 13(4):8294-8300.
|
62 |
Lee HJ, Kim KS, Kim EJ, et al. Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model[J]. Stem Cells, 2007, 25(5):1204-1212.
|
63 |
Genchi A, Brambilla E, Sangalli F, et al. Neural stem cell transplantation in patients with progressive multiple sclerosis: an open-label, phase 1 study[J]. Nat Med, 2023, 29(1):75-85.
|
64 |
Amemori T, Romanyuk N, Jendelova P, et al. Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat[J]. Stem Cell Res Ther, 2013, 4(3):68.
|
65 |
Kim JH, Ahn JS, Lee DS, et al. Anti-cancer effect of neural stem cells transfected with carboxylesterase and sTRAIL genes in animals with brain lesions of lung cancer[J]. pharmaceuticals (Basel), 2023, 16(8):1156.
|
66 |
Yew CT, Gurumoorthy N, Nordin F, et al. Integrase deficient lentiviral vector: prospects for safe clinical applications[J]. PeerJ, 2022, 10:e13704.
|
67 |
Selvam S, Midhun BT, Bhowmick T, et al. Bioprinting of exosomes: prospects and challenges for clinical applications[J]. Int J Bioprint, 2023, 9(2):690.
|