切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (04) : 251 -256. doi: 10.3877/cma.j.issn.2095-1221.2025.04.009

综述

神经干细胞永生化的机制及其应用进展
马逸夫, 孙芳玲, 刘婷婷, 田欣, 王文()   
  1. 100053 北京,首都医科大学宣武医院实验动物室
  • 收稿日期:2025-01-08 出版日期:2025-08-01
  • 通信作者: 王文

Progress in mechanism and application of immortalization of neural stem cells

Yifu Ma, Fangling Sun, Tingting Liu, Xin Tian, Wen Wang()   

  1. Department of Experimental Animal Center, Xuan-Wu Hospital of Capital Medical University, Beijing 100053, China
  • Received:2025-01-08 Published:2025-08-01
  • Corresponding author: Wen Wang
引用本文:

马逸夫, 孙芳玲, 刘婷婷, 田欣, 王文. 神经干细胞永生化的机制及其应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 251-256.

Yifu Ma, Fangling Sun, Tingting Liu, Xin Tian, Wen Wang. Progress in mechanism and application of immortalization of neural stem cells[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(04): 251-256.

神经干细胞(NSCs)在神经系统的发育、再生和修复过程中发挥着至关重要的作用。近年来,随着对NSCs特性研究的深入,NSCs的永生化技术逐渐成为神经生物学领域的研究热点。这种技术不仅能够克服NSCs在体外培养中分裂能力受限的问题,还为其在基础研究和临床应用中的广泛使用提供可能性。然而,目前NSCs永生化的机制、技术方法以及临床应用仍面临许多挑战和问题。本文对NSCs永生化的研究进展进行总结,并探讨其在神经退行性疾病和脑损伤修复等领域的应用潜力,期望为干细胞未来研究方向提供新的视角,进一步推动NSCs永生化技术在临床中的应用。

Neural stem cells (NSCs) play a crucial role in the development, regeneration and repair of the nervous system. In recent years, with the in-depth research on the characteristics of NSCs, the immortalization technology of NSCs has gradually become a research hotspot in the field of neurobiology. This technique is not only able to overcome the problem of limited division capacity of NSCs in vitro culture, but also offers the possibility of their widespread use in basic research and clinical applications. However, there are still many challenges and problems in the mechanism, technical methods and clinical application of immortalized NSCs. This article summarizes the latest research progress of neural stem cell immortalization, and discusses its application potential in the field of neurodegenerative diseases and brain injury repair, hoping to provide a new perspective for the future research direction of stem cells and further promote the clinical application of immortalization technology of NSCs.

图1 神经干细胞永生化的机制注:PI3K/AKT为磷脂酰肌醇3激酶/蛋白激酶B
1
Fan Y, Goh ELK, Chan JKY. Neural cells for neurodegenerative diseases in clinical trials[J]. Stem Cells Transl Med, 2023, 12(8):510-526.
2
Wang S, He Q, Qu Y, et al. Emerging strategies for nerve repair and regeneration in ischemic stroke: neural stem cell therapy[J]. Neural Regen Res, 2024, 19(11):2430-2443.
3
Matsumura H, Marushima A, Ishikawa H, et al. Induced neural cells from human dental pulp ameliorate functional recovery in a murine model of cerebral infarction[J]. Stem Cell Rev Rep, 2022, 18(2):595-608.
4
Kalogeropoulou A, Mougkogianni M, Iliadou M, et al. Intrinsic neural stem cell properties define brain hypersensitivity to genotoxic stress[J]. Stem Cell Reports, 2022, 17(6):1395-1410.
5
Zhang Q, Li J, An W, et al. Neural stem cell secretome and its role in the treatment of neurodegenerative disorders[J]. J Integr Neurosci, 2020, 19(1):179-185.
6
ArfèS, Karagyozova T, Forest A, et al. H3.3 deposition counteracts the replication-dependent enrichment of H3.1 at chromocenters in embryonic stem cells[J]. Nat Commun, 2025, 16(1):5138.
7
Li P, Gao L, Cui T, et al. Cops5 safeguards genomic stability of embryonic stem cells through regulating cellular metabolism and DNA repair[J]. Proc Natl Acad Sci U S A, 2020, 117(5):2519-2525.
8
Hahn WC, Meyerson M. Telomerase activation, cellular immortalization and cancer[J]. Ann Med, 33(2):123-129.
9
Maiani E, Milletti G, Cecconi F. The pro-autophagic protein AMBRA1 coordinates cell cycle progression by regulating CCND (cyclin D) stability[J]. Autophagy, 2021, 17(12):4506-4508.
10
Liu M, Zhang Y, Jian Y, et al. The regulations of telomerase reverse transcriptase (TERT) in cancer[J]. Cell Death Dis, 2024, 15(1):90.
11
Saretzki G. Telomerase and neurons: an unusual relationship[J]. Neural Regen Res, 2022, 17(11):2364-2367.
12
Liu MY, Fan Y, Ni N, et al. TERT mediates the U-shape of glucocorticoids effects in modulation of hippocampal neural stem cells and associated brain function[J]. CNS Neurosci Ther, 2024, 30(2):e14577.
13
Rosen J, Jakobs P, Ale-Agha N, et al. Non-canonical functions of telomerase reverse transcriptase-impact on redox homeostasis[J]. Redox Biol, 2020, 34:101543.
14
Yu X, Liu MM, Zheng CY, et al. Telomerase reverse transcriptase and neurodegenerative diseases[J]. Front Immunol, 2023, 14:1165632.
15
Sze KM, Ho DW, Chiu YT, et al. Hepatitis B virus-telomerase reverse transcriptase promoter integration harnesses host ELF4, resulting in telomerase reverse transcriptase gene transcription in hepatocellular carcinoma[J]. Hepatology, 2021, 73(1):23-40.
16
Liu G, Cheng G, Zhang Y, et al. Pyridoxine regulates hair follicle development via the PI3K/Akt, Wnt and Notch signalling pathways in rex rabbits[J]. Anim Nutr, 2021, 7(4):1162-1172.
17
He C, Li Y, Gan L, et al. Notch signaling regulates Th17 cells differentiation through PI3K/AKT/mTORC1 pathway and involves in the thyroid injury of autoimmune thyroiditis[J]. J Endocrinol Invest, 2024, 47(8):1971-1986.
18
Hou G, Zhao Q, Zhang M, et al. LSD1 regulates Notch and PI3K/Akt/mTOR pathways through binding the promoter regions of Notch target genes in esophageal squamous cell carcinoma[J]. Onco Targets Ther, 2019, 12:5215-5225.
19
Cheng YY, Ding YX, Bian GL, et al. Reactive astrocytes display pro-inflammatory adaptability with modulation of Notch-PI3K-AKT signaling pathway under inflammatory stimulation[J]. Neuroscience, 2020, 440:130-145.
20
Zhong W, Xu L, Jiang G, et al. Sodium tanshinone IIA sulfonate promotes proliferation and differentiation of endogenous neural stem cells to repair rat spinal cord injury via the Notch pathway[J]. J Transl Med, 2025, 23(1):367.
21
Man KH, Wu Y, Gao Z, et al. SOX10 mediates glioblastoma cell-state plasticity[J]. EMBO Rep, 2024, 25(11):5113-5140.
22
Zhao Z, Fowle H, Valentine H, et al. Immortalization of human primary prostate epithelial cells via CRISPR inactivation of the CDKN2A locus and expression of telomerase[J]. Prostate Cancer Prostatic Dis, 2021,24(1):233-243.
23
钟周玥,于思远,葛胜祥. 人B细胞永生化研究进展[J]. 生物工程学报, 2021, 37(1):30-39.
24
Sekine A, Yasunaga G, Kumamoto S, et al. Characterization of common minke whale (balaenoptera acutorostrata) cell lines immortalized with the expression of cell cycle regulators[J]. Adv Biol (Weinh), 2024, 8(3):e2300227.
25
Schwarz ER, Franco M, Busse N, et al. Quo Vadis, Dottore? Religious, philosophical and medical perspectives on the quest for immortality[J]. J Relig Health, 2022, 61(4):3177-3191.
26
Fus-Kujawa A, Mendrek B, Trybus A, et al. Potential of induced pluripotent stem cells for use in gene therapy: history, molecular bases, and medical perspectives[J]. Biomolecules, 2021, 11(5):699.
27
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
28
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
29
Horisawa K, Suzuki A. Direct cell-fate conversion of somatic cells: toward regenerative medicine and industries[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2020, 96(4):131-158.
30
Thier M, Wörsdörfer P, Lakes YB, et al. Direct conversion of fibroblasts into stably expandable neural stem cells[J]. Cell Stem Cell, 2012, 10(4):473-479.
31
Ahuja D, Sáenz-Robles MT, et al. SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation[J]. Oncogene, 2005, 24(52):7729-7745.
32
Li Y, Darabi R. Role of epigenetics in cellular reprogramming; from iPSCs to disease modeling and cell therapy[J]. J Cell Biochem, 2022, 123(2):147-154.
33
Guo T, Wei Q. Cell reprogramming techniques: contributions to cancer therapy[J]. Cell Reprogram, 2023, 25(4):142-153.
34
Mochnacky F, Bul'kova V, Holota R, et al. "Neural stem cells puzzle" missing piece: telomerase reverse transcriptase expression patterns during nervous system ontogenesis in rats[J]. J Physiol Pharmacol, 2021, 72(6). Epub 2022 Apr 2.
35
Almengló C, González-Mosquera T, Caamaño P, et al. Immortalization of a cell line with neural stem cell characteristics derived from mouse embryo brain[J]. Dev Dyn, 2020, 249(1):112-124.
36
Bonnay F, Veloso A, Steinmann V, et al. Oxidative metabolism drives immortalization of neural stem cells during tumorigenesis[J]. Cell, 2020, 182(6):1490-1507.
37
Garone C, De Giorgio F, Carli S. Mitochondrial metabolism in neural stem cells and implications for neurodevelopmental and neurodegenerative diseases[J]. J Transl Med, 2024, 22(1):238.
38
Bonnay F, Veloso A, Steinmann V, et al. Oxidative metabolism drives immortalization of neural stem cells during tumorigenesis[J]. Cell, 2020, 182(6):1490-1507.e19.
39
Zheng X, Boyer L, Jin M, et al. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation[J]. Elife, 2016, 5:e13374.
40
Carracedo A. Metabolism in the tumor cell and beyond[J]. Mol Oncol, 2023, 17(6):921-924.
41
Mooney R, Abidi W, Batalla-Covello J, et al. Allogeneic human neural stem cells for improved therapeutic delivery to peritoneal ovarian cancer[J]. Stem Cell Res Ther, 2021, 12(1):205.
42
Mi R, Luo Y, Cai J, et al. Immortalized neural stem cells differ from nonimmortalized cortical neurospheres and cerebellar granule cell progenitors[J]. Exp Neurol, 2005, 194(2):301-319.
43
Wei N, Sun Z, Yu J, et al. Immunological responses to transgene-modified neural stem cells after transplantation[J]. Front Immunol, 2021, 12:697203.
44
Guan T, Guo Y, Zhou T, et al. Oxidized SOD1 accelerates cellular senescence in neural stem cells[J]. Stem Cell Res Ther, 2024, 15(1):55.
45
Apostolou S, Donega V. Embracing the heterogeneity of neural stem cells in the subventricular zone[J]. Stem Cell Reports, 2025, 12:102452.
46
Ruetz TJ, Pogson AN, Kashiwagi CM, et al. CRISPR-Cas9 screens reveal regulators of ageing in neural stem cells[J]. Nature, 2024, 634(8036):1150-1159.
47
Tamura R, Miyoshi H, Imaizumi K, et al. Gene therapy using genome-edited iPS cells for targeting malignant glioma[J]. Bioeng Transl Med, 2022, 8(5):e10406.
48
Gao M, Dong Q, Yang Z, et al. Long non-coding RNA H19 regulates neurogenesis of induced neural stem cells in a mouse model of closed head injury[J]. Neural Regen Res, 2024, 19(4):872-880.
49
Andreotti JP, Silva WN, Costa AC, et al. Neural stem cell niche heterogeneity[J]. Semin Cell Dev Biol, 2019, 95:42-53.
50
Blurton-Jones M, Kitazawa M, Martinez-Coria H, et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease[J]. Proc Natl Acad Sci, 2009, 106(32):13594-13599.
51
李志方,唐军,李露斯. C17.2神经干细胞移植Aβ1-40损伤大鼠海马后的分化及对学习记忆的改善[J]. 第三军医大学学报, 2008, 30(7):595-599.
52
Jiang S, Wang H, Yang C, et al. Phase 1 study of safety and preliminary efficacy of intranasal transplantation of human neural stem cells (ANGE-S003) in Parkinson’s disease[J]. Neurol Neurosurg Psychiatry, 2024, 95(12):1102-1111.
53
Hwang DH, Lee HJ, Park IH, et al. Intrathecal transplantation of human neural stem cells overexpressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice[J]. Gene Ther, 2009, 16(10):1234-1244.
54
Mazzini L, Gelati M, Profico DC, et al. Results from phase I clinical trial with intraspinal injection of neural stem cells in amyotrophic lateral sclerosis: a long-term outcome[J]. Stem Cells Transl Med, 2019, 8(9):887-897.
55
Szelenberger R, Kostka J, Saluk-Bijak J, et al. Pharmacological interventions and rehabilitation approach for enhancing brain self-repair and stroke recovery[J]. Curr Neuropharmacol, 2020, 18(1):51-64.
56
Regenhardt RW, Takase H, Lo EH, et al. Translating concepts of neural repair after stroke: Structural and functional targets for recovery[J]. Restor Neurol Neurosci, 2020, 38(1):67-92.
57
Liu XY, Feng YH, Feng QB, et al. Low-temperature 3D-printed collagen/chitosan scaffolds loaded with exosomes derived from neural stem cells pretreated with insulin growth factor-1 enhance neural regeneration after traumatic brain injury[J]. Neural Regen Res, 2023, 18(9):1990-1998.
58
Xia B, Chen G, Zou Y, et al. Low-intensity pulsed ultrasound combination with induced pluripotent stem cells-derived neural crest stem cells and growth differentiation factor 5 promotes sciatic nerve regeneration and functional recovery[J]. J Tissue Eng Regen Med, 2019, 13(4) :625-636.
59
Zhu Y, Liu R, Zhao X, et al. VEGF overexpression in transplanted NSCs promote recovery of neurological function in rats with cerebral ischemia by modulating the Wnt signal transduction pathway[J]. Neurosci Lett, 2024, 824:137668.
60
Zhang G, Li Y, Reuss JL, et al. Stable intracerebral transplantation of neural stem cells for the treatment of paralysis due to ischemic stroke[J]. Stem Cells Transl Med, 2019, 8(10):999-1007.
61
Xue YZ, Li XX, Li L, et al. Curative effect and safety of intrathecal transplantation of neural stem cells for the treatment of cerebral hemorrhage[J]. Genet Mol Res, 2014, 13(4):8294-8300.
62
Lee HJ, Kim KS, Kim EJ, et al. Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model[J]. Stem Cells, 2007, 25(5):1204-1212.
63
Genchi A, Brambilla E, Sangalli F, et al. Neural stem cell transplantation in patients with progressive multiple sclerosis: an open-label, phase 1 study[J]. Nat Med, 2023, 29(1):75-85.
64
Amemori T, Romanyuk N, Jendelova P, et al. Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat[J]. Stem Cell Res Ther, 2013, 4(3):68.
65
Kim JH, Ahn JS, Lee DS, et al. Anti-cancer effect of neural stem cells transfected with carboxylesterase and sTRAIL genes in animals with brain lesions of lung cancer[J]. pharmaceuticals (Basel), 2023, 16(8):1156.
66
Yew CT, Gurumoorthy N, Nordin F, et al. Integrase deficient lentiviral vector: prospects for safe clinical applications[J]. PeerJ, 2022, 10:e13704.
67
Selvam S, Midhun BT, Bhowmick T, et al. Bioprinting of exosomes: prospects and challenges for clinical applications[J]. Int J Bioprint, 2023, 9(2):690.
[1] 中华医学会器官移植学分会肝移植学组, 中国医师协会器官移植医师分会. 中国扩大标准供肝移植临床应用指南(2025版)[J/OL]. 中华移植杂志(电子版), 2025, 19(02): 65-75.
[2] 李逸凡, 洪源, 熊茂明. 基于3D Slicer软件的术前规划在腹壁纤维瘤手术中的临床应用价值:一项单中心前瞻性分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(03): 286-291.
[3] 中华医学会呼吸病学分会肺功能学组. 成人肺功能检查技术进展及临床应用推荐指南(2025版)[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 197-212.
[4] 陈慧, 田森, 张伟, 董宇超, 白冲, 王琴. 内科胸腔镜检查专用床单在不明原因胸腔积液患者中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 300-303.
[5] 林敏杰, 吕艳玲, 姚羽, 王艳泓, 邹如意, 唐成. 支气管镜下钬激光技术在中心气道狭窄中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 315-320.
[6] 韩秋霞, 朱晗玉, 段颖洁, 田明威, 朱凯怡, 马丽洁, 孙倩美. 维持性血液透析患者单核细胞/高密度脂蛋白胆固醇比值和血小板/高密度脂蛋白胆固醇比值与脑卒中风险的相关性[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 140-145.
[7] 张莉, 余双, 王宁利. 视网膜血管分形分析在青光眼和脑卒中患者中应用的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 141-148.
[8] 于帆, 迟冰玉, 朱紫嫣, 许光旭. 经皮耳迷走神经刺激治疗脑卒中后吞咽障碍的疗效分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 214-219.
[9] 刘佳成, 许晓辉, 杜艳姣, 张云亭, 段智慧. 载脂蛋白E基因多态性对急性缺血性脑卒中后抑郁的影响[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 220-226.
[10] 荣毅, 田锦秀, 庞琦良, 成爱霞. 高频重复经颅磁刺激对脑卒中后中枢性疼痛的疗效观察[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 227-231.
[11] 王珊珊, 王文, 杨启亮, 张文朝, 崔宁宁, 李婷. 虚拟现实技术对脑卒中患者认知和负性情绪影响的Meta分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 161-170.
[12] 王永清, 马小花, 张晓玲, 张赛赛, 张娜丽. 老年脑卒中患者健康素养、社会支持与卒中复发风险感知的关系及其影响因素研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 180-186.
[13] 杨墨, 曹月洲, 吕朋华, 丁鸭锁, 刘振生, 贾振宇, 赵林波, 徐川, 施海彬, 刘圣. 溶栓时间窗内动脉粥样硬化性基底动脉闭塞桥接治疗与直接取栓的多中心对照研究[J/OL]. 中华介入放射学电子杂志, 2025, 13(02): 104-109.
[14] 陈娜娜, 韩莹, 胥青芝. 基于文献计量学的脑卒中吞咽障碍康复护理研究进展与临床热点趋势分析[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 100-108.
[15] 庞淇丹, 崔玮, 唐涛, 姜德春, 李深. 检测脑缺血再灌注损伤的探针及技术进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 149-154.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?