切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (05) : 293 -300. doi: 10.3877/cma.j.issn.2095-1221.2025.05.006

所属专题: 文献

综述

诱导多能干细胞构建心脏和血管类器官研究新进展
刘昱圻1,2, 陈韵岱1,2,()   
  1. 1100037 北京,解放军总医院第六医学中心心血管内科
    2100853 北京,解放军总医院第一医学中心心血管内科
  • 收稿日期:2025-07-01 出版日期:2025-10-01
  • 通信作者: 陈韵岱
  • 基金资助:
    国家自然科学基金区域创新发展联合基金(U23A20109)

Progress of inducing multipotent stem cells to construct cardiac and vascular organoids

Yuqi Liu1,2, Yundai Chen1,2,()   

  1. 1Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
    2Department of Cardiology, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
  • Received:2025-07-01 Published:2025-10-01
  • Corresponding author: Yundai Chen
引用本文:

刘昱圻, 陈韵岱. 诱导多能干细胞构建心脏和血管类器官研究新进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(05): 293-300.

Yuqi Liu, Yundai Chen. Progress of inducing multipotent stem cells to construct cardiac and vascular organoids[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(05): 293-300.

心血管疾病(CVD)是全球死亡和致残的首要疾病,其机制和治疗研究依赖于有效的疾病模型,但传统2D细胞培养和动物模型因种属差异和病理机制的不同,一定程度上限制其临床转化。近年来,诱导多能干细胞(iPSC)与类器官技术的融合为心血管研究开辟新范式,通过体细胞重编程获得患者特异性iPSC,结合3D生物打印与微流控技术,成功构建出具备电传导、收缩功能和血管网络的心脏类器官及多器官芯片系统。这些模型不仅能精准模拟心肌损伤、动脉粥样硬化等疾病的动态进程,还可用于药物心脏毒性的评估、构建疾病模型,以及疾病机制的探索和再生医学等。然而,当前技术仍存在类器官成熟度低、批次间异质性和神经-免疫微环境缺失等瓶颈。未来研究将聚焦于生物工程的建立、多疾病微环境构建,以及CRISPR-Cas9基因编辑联合移植治疗等方面,以推动心血管精准医疗与再生医学的临床转化。

Cardiovascular disease (CVD) remains the leading cause of global mortality and disability, and its mechanisms and treatment research rely on effective disease models. However, the clinical translation of research findings has been limited by the inherent constraints of traditional two-dimensional cell cultures and animal models, which often fail to fully recapitulate human pathophysiology due to interspecies differences. In recent years, the convergence of induced pluripotent stem cell (iPSC) technology and organoid systems has established a transformative paradigm for cardiovascular research. By reprogramming patient-derived somatic cells into iPSC and leveraging three-dimentional bioprinting and microfluidic platforms, researchers have successfully engineered cardiac organoids and multi-organ chip systems that exhibit functional electrophysiology, contractility, and vascular networks. These advanced models not only faithfully replicate dynamic disease processes, such as myocardial injury and atherosclerosis, but also enable applications in drug cardiotoxicity assessment, disease modeling, mechanistic investigations and regenerative medicine. Nevertheless, critical challenges persist, including low organoid maturity, batch-to-batch heterogeneity, and the absence of neuro-immune crosstalk in current systems. Future research will focus on bioengineering innovations, constructing multi-disease microenvironments, and combinatorial approaches like CRISPR-Cas9 gene editing coupled with transplantation therapy to accelerate the translation of precision medicine and regenerative therapies for CVD.

图1 iPSC体外重编程构建心脏及血管3D结构示意注:TnT为肌钙蛋白T;CNN1为钙调理蛋白1;Wnt/activin为Wnt/activin信号通路;VEGF-A为血管内皮生长因子A;FGF-2为成纤维细胞生长因子-2;BMP4为骨形态发生蛋白4。从心肌梗死或者动脉粥样硬化等疾病患者的外周血,分离单核细胞,经体外重编程,构建iPSC细胞系,分别通过激活Wnt/Activin或BMP4/VEGF等信号通路,分化为心肌细胞(TnT+)、平滑肌细胞(CNN1+),最终经3D培养分别组装成心脏类器官和血管类器官模型。构建的心脏和血管类器官模型,可用于药物筛选(如心肌毒性评估)、疾病建模(如缺氧再灌注损伤模型)和机制研究(动脉粥样硬化的形成机制等)多种应用场景
1
Leong DP, Joseph PG, McKee M, et al. Reducing the global burden of cardiovascular disease, part 2: prevention and treatment of cardiovascular disease[J]. Circ Res, 2017, 121(6):695-710.
2
Mensah GA, Fuster V, Murray CJL, et al. Global burden of cardiovascular diseases and risks, 1990-2022[J]. J Am Coll Cardiol, 2023, 82(25):2350-2473.
3
Qiu Y, Xu Q, Xie P, et al. Epigenetic modifications and emerging therapeutic targets in cardiovascular aging and diseases[J]. Pharmacol Res, 2025, 211:107546.
4
Jurado VJ, Anderson N, Datcher I, et al. Striving towards equity in cardiovascular genomics research[J]. Curr Atheroscler Rep, 2025, 27(1):34.
5
Laskary AR, Hudson JE, Porrello ER. Designing multicellular cardiac tissue engineering technologies for clinical translation[J]. Semin Cell Dev Biol, 2025, 171:103612.
6
Li P, Chang Y, Song J. Advances in preclinical surgical therapy of cardiovascular diseases[J]. Int J Surg, 2024, 110(8):4965-4975.
7
Dutta D, Heo I, Clevers H. Disease modeling in stem cell-derived 3D organoid systems[J]. Trends Mol Med, 2017, 23(5):393-410.
8
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
9
Graffmann N, Adjaye J. Editorial for special issue: iPS cells (iPSCs) for modelling and treatment of human diseases[J]. Cells, 2022, 11(15): 2270.
10
Yu P, Liu B, Dong C, et al. Induced pluripotent stem cells-based regenerative therapies in treating human aging-related functional decline and diseases[J]. Cells, 2025, 14(8):619.
11
Mohite P, Puri A, Dave R, et al. Unlocking the therapeutic potential: odyssey of induced pluripotent stem cells in precision cell therapies[J]. Int J Surg, 2024, 110(10):6432-6455.
12
Du H, Huo Z, Chen Y, et al. Induced pluripotent stem cells and their applications in amyotrophic lateral sclerosis[J]. Cells, 2023, 12(6):971.
13
Pei H, Li H, Xu L, et al. Preferential hematopoietic differentiation in induced pluripotent stem cells derived from human umbilical cord arterial endothelialcells[J]. Arterioscler Thromb Vasc Biol, 2023, 43(5):697-712.
14
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications[J]. Signal Transduct Target Ther, 2024, 9(1):112.
15
Tavares-Marcos C, Correia M, Bernardes DJB. Telomeres as hallmarks of iPSC aging: a review on telomere dynamics during stemness and cellular reprogramming[J]. Ageing Res Rev, 2025, 109:102773.
16
Esteves F, Brito D, Rajado AT, et al. Reprogramming iPSCs to study age-related diseases: models, therapeutics, and clinical trials[J]. Mech Ageing Dev, 2023, 214:111854.
17
Yin X, Li Q, Shu Y, et al. Exploiting urine-derived induced pluripotent stem cells for advancing precision medicine in cell therapy, disease modeling, and drug testing[J]. J Biomed Sci, 2024, 31(1):47.
18
Lien CY, Chen TT, Tsai ET, et al. Recognizing the differentiation degree of human induced pluripotent stem cell-derived retinal pigment epithelium cells using machine learning and deep learning-based approaches[J]. Cells, 2023, 12(2):211.
19
Fang M, Allen A, Luo C, et al. Unlocking the potential of iPSC-derived immune cells: engineering iNK and iT cells for cutting-edge immunotherapy[J]. Front Immunol, 2024, 15:1457629.
20
Edwards MM, Wang N, Massey DJ, et al. Incomplete reprogramming of DNA replication timing in induced pluripotent stem cells[J]. Cell Rep, 2024, 43(1):113664.
21
McKenna DH, Perlingeiro R. Development of allogeneic iPS cell-based therapy: from bench to bedside[J]. EMBO Mol Med, 2023, 15(2):e15315.
22
Zhang L, Liang L, Su T, et al. Regulation of the keratocyte phenotype and cell behavior derived from human induced pluripotent stem cells by substrate stiffness[J]. ACS Biomater Sci Eng, 2023, 9(2):856-868.
23
Gong L, Zhang Y, Zhu Y, et al. Rapid generation of functional vascular organoids via simultaneous transcription factor activation of endothelial and mural lineages[J]. Cell Stem Cell, 2025, 32(8):1200-1217.e6.
24
Yang S, Hu H, Kung H, et al. Organoids: the current status and biomedical applications[J]. MedComm, 2023, 4(3):e274.
25
Naderi-Meshkin H, Cornelius VA, Eleftheriadou M, et al. Vascular organoids: unveiling advantages, applications, challenges, and disease modelling strategies[J]. Stem Cell Res Ther, 2023, 14(1):292.
26
张冰也, 吴羿霏, 杜新. 类器官技术在新药研发中的应用[J]. 药学进展, 2023, 11(47):849-863.
27
Zhou H, Ye P, Xiong W, et al. Genome-scale CRISPR-Cas9 screening in stem cells: theories, applications andchallenges[J]. Stem Cell Res Ther, 2024, 15(1):218.
28
Rao J, Song C, Hao Y, et al. Leveraging patient-derived organoids for personalized liver cancer treatment[J]. Int J Biol Sci, 2024, 20(13):5363-5374.
29
Huang S, Wu Y, Zhao H, et al. Advancements in bone organoids: perspectives on construction methodologies and application strategies[J]. J Adv Res, 2025, 11:S2090-1232(25)00397-2.
30
Ho YH, Liao Y, Liao L, et al. Advances of cell printing technology in organoid engineering[J]. Tissue Eng Part B Rev, 2025.
31
Mei J, Liu X, Tian HX, et al. Tumour organoids and assembloids: patient-derived cancer avatars for immunotherapy[J]. Clin Transl Med, 2024, 14(4):e1656.
32
Roberto DBN, Wang C, Maity S, et al. Engineered organoids for biomedical applications[J]. Adv Drug Deliv Rev, 2023, 203:115142.
33
Zhang T, Yang S, Ge Y, et al. Unveiling the heart's hidden enemy: dynamic insights into polystyrene nanoplastic-induced cardiotoxicity based on cardiac organoid-on-a-chip[J]. ACS Nano, 2024, 18(45): 31569-31585.
34
Li Y, Huang D, Zhang Y, et al. Microfluidic-assisted engineering of hydrogels with microscale complexity[J]. Acta Biomater, 2025, 199:1-17.
35
Abilez OJ, Yang H, Guan Y, et al. Gastruloids enable modeling of the earliest stages of human cardiac and hepatic vascularization[J]. Science, 2025, 388(6751):eadu9375.
36
Patino-Guerrero A, Ponce WR, Kodibagkar VD, et al. Development and characterization of isogenic cardiacorganoids from human-induced pluripotent stem cells under supplement starvation regimen[J]. ACS Biomater Sci Eng, 2023, 9(2):944-958.
37
Wang X, Luo Y, Ma Y, et al. Converging bioprinting and organoids to better recapitulate the tumor microenvironment[J]. Trends Biotechnol, 2024, 42(5):648-663.
38
Liu S, Fang C, Zhong C, et al. Recent advances in pluripotent stem cell-derived cardiac organoids and heart-on-chip applications for studying anti-cancer drug-induced cardiotoxicity[J]. Cell Biol Toxicol, 2023, 39(6):2527-2549.
39
Feyen D, McKeithan WL, Bruyneel A, et al. Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes[J]. Cell Rep, 2020, 32(3):107925.
40
Li J, Li Y, Song G, et al. Revolutionizing cardiovascular research: human organoids as a beacon of hope for understanding and treating cardiovascular diseases[J]. Mater Today Bio, 2025, 30:101396.
41
Hinson JT, Chopra A, Nafissi N, et al. HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy[J]. Science, 2015, 349(6251):982-986.
42
Prondzynski M, Lemoine MD, Zech AT, et al. Disease modeling of a mutation in alpha-actinin 2 guides clinical therapy in hypertrophic cardiomyopathy[J]. EMBO Mol Med, 2019, 11(12):e11115.
43
Shinnawi R, Shaheen N, Huber I, et al. Modeling reentry in the short QT syndrome with human-induced pluripotent stem cell-derived cardiac cell sheets[J]. J Am Coll Cardiol, 2019, 73(18):2310-2324.
44
Ye L, Liu J, Lei W, et al. Disruption of cTnT-mediated sarcomere-mitochondrial communication results in dilated cardiomyopathy[J]. Circulation, 2025, 152(6):397-415.
45
Voges HK, Foster SR, Reynolds L, et al. Vascular cells improve functionality of human cardiac organoids[J]. Cell Rep, 2023, 42(5): 112322.
46
Du X, Jia H, Chang Y, et al. Progress of organoid platform in cardiovascular research[J]. Bioact Mater, 2024, 40:88-103.
47
Thomas D, Noishiki C, Gaddam S, et al. CCL2-mediated endothelial injury drives cardiac dysfunction in long COVID[J]. Nat Cardiovasc Res, 2024, 3(10):1249-1265.
48
Wimmer RA, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy[J]. Nature, 2019, 565(7740):505-510.
49
Kong D, Ryu JC, Shin N, et al. In vitromodeling of atherosclerosis using iPSC-derived blood vessel organoids[J]. Adv Healthc Mater, 2025, 14(1):e2400919.
50
Mallick S, Chakrabarti J, Eschbacher J, et al. Genetically engineered human pituitary corticotroph tumor organoids exhibit divergent responses to glucocorticoid receptor modulators[J]. Transl Res, 2023, 256:56-72.
51
Tu C, Cunningham NJ, Zhang M, et al. Human induced pluripotent stem cells as a screening platform for drug-induced vascular toxicity[J]. Front Pharmacol, 2021, 12:613837.
52
Xue G, Li X, Kalim M, et al. Clinical drug screening reveals clofazimine potentiates the efficacy while reducing the toxicity of anti-PD-1 and CTLA-4 immunotherapy[J]. Cancer Cell, 2024, 42(5):780-796.e6.
53
Tirgar P, Vikstrom A, Sepulveda J, et al. Heart-on-a-miniscope: a miniaturized solution for electrophysiological drug screening in cardiac organoids[J]. Small, 2025, 21(6):e2409571.
54
Wang B, Ganjee R, Khandaker I, et al. Deep learning based characterization of human organoids using optical coherence tomography[J]. Biomed Opt Express, 2024, 15(5):3112-3127.
55
Kowalczewski A, Sun S, Mai NY, et al. Design optimization of geometrically confined cardiac organoids enabled by machine learning techniques[J]. Cell Rep Methods, 2024, 4(6):100798.
56
Shi R, Reichardt M, Fiegle DJ, et al. Contractility measurements for cardiotoxicity screening with ventricular myocardial slices of pigs[J]. Cardiovasc Res, 2023, 119(14):2469-2481.
57
Woo LA, Wintruba KL, Wissmann B, et al. Multi-omic analysis reveals VEGFR2, PI3K, and JNK mediate the small molecule induction of human iPSC-derived cardiomyocyte proliferation[J]. iScience, 2024, 27(8):110485.
58
Bissoli I, Alabiso F, Cosentino C, et al. Modeling heart failure by induced pluripotent stem cell-derived organoids[J]. Biochim Biophys Acta Mol Basis Dis, 2025, 1871(6):167861.
59
Fang Y, Jo SK, Park SJ, et al. Role of the circadian clock and effect of time-restricted feeding in adenine-induced chronic kidney disease[J]. Lab Invest, 2023, 103(1):100008.
60
Tian Y, Tsujisaka Y, Li VY, et al. Immunosuppressants tacrolimus and sirolimus revert the cardiac antifibrotic properties of p38-MAPK inhibition in 3D-multicellular human iPSC-heart organoids[J]. Front Cell Dev Biol, 2022, 10:1001453.
61
Sun D, Zhang K, Zheng F, et al. Matrix viscoelasticity controls differentiation of human blood vessel organoids into arterioles and promotes neovascularization in myocardial infarction[J]. Adv Mater, 2025, 37(5):e2410802.
62
Perea-Gil I, Seeger T, Bruyneel A, et al. Serine biosynthesis as a novel therapeutic target for dilated cardiomyopathy[J]. Eur Heart J, 2022, 43(36):3477-3489.
63
Bai B, Li J, Wang Z, et al. Neural organoids protect engineered heart tissues from glucolipotoxicity by transferring versican in a co-culture system[J]. Cell Prolif, 2025, 3:e70070.
64
Ghosheh M, Ehrlich A, Ioannidis K, et al. Electro-metabolic coupling in multi-chambered vascularized human cardiac organoids[J]. Nat Biomed Eng, 2023, 7(11):1493-1513.
65
Gu B, Han K, Cao H, et al. Heart-on-a-chip systems with tissue-specific functionalities for physiological, pathological, and pharmacological studies[J]. Mater Today Bio, 2023, 24:100914.
66
Liu Y, Zheng J, Zhong L, et al. Vessel-on-a-chip coupled proteomics reveal pressure-overload-induced vascular remodeling[J]. Adv Sci (Weinh), 2025, 12(19):e2415024.
67
Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans[J]. Science, 2009, 324(5923):98-102.
68
Varzideh F, Pahlavan S, Ansari H, et al. Human cardiomyocytes undergo enhanced maturation in embryonic stem cell-derived organoid transplants[J]. Biomaterials, 2019, 192:537-550.
69
Wimmer RA, Leopoldi A, Aichinger M, et al. Generation of blood vessel organoids from human pluripotent stem cells[J]. Nat Protoc, 2019, 14(11):3082-3100.
70
Miyagawa S, Kainuma S, Kawamura T, et al. Case report: transplantation of human induced pluripotent stem cell-derived cardiomyocyte patches for ischemic cardiomyopathy[J]. Front Cardiovasc Med, 2022, 9:950829.
71
Chang D, Wen Z, Wang Y, et al. Ultrastructural features of ischemic tissue following application of a bio-membrane based progenitor cardiomyocyte patch for myocardial infarction repair[J]. PLoS One, 2014, 9(10):e107296.
72
Tan Y, Coyle RC, Barrs RW, et al. Nanowired human cardiac organoid transplantation enables highly efficient and effective recovery of infarcted hearts[J]. Sci Adv, 2023, 9(31):eadf2898.
73
Yu F, Liu F, Liang X, et al. iPSC-derived airway epithelial cells: progress, promise, and challenges[J]. Stem Cells, 2023, 41(1):1-10.
74
Suchy F, Yamaguchi T, Nakauchi H. iPSC-derived organs in vivo: challenges and promise[J]. Cell Stem Cell, 2018, 22(1):21-24.
75
Hwang JW, Desterke C, Feraud O, et al. iPSC-derived embryoid bodies as models of c-met-mutated hereditary papillary renal cell carcinoma[J]. Int J Mol Sci, 2019, 20(19):4867.
76
Nath SC, Menendez L, Friedrich BI. Overcoming the variability of iPSCs in the manufacturing of cell-based therapies[J]. Int J Mol Sci, 2023, 24(23):16929.
77
Pavon N, Sun Y, Pak C. Cell type specification and diversity in subpallial organoids[J]. Front Genet, 2024, 15:1440583.
78
Cai H, Tian C, Chen L, et al. Vascular network-inspired diffusible scaffolds for engineering functional midbrain organoids[J]. Cell Stem Cell, 2025, 32(5):824-837.e5.
79
Zieger, Frejek D, Zimmermann S, et al. Towards automation in 3D cell culture: selective and gentle high-throughput handling of spheroids and organoids via novel pick-flow-drop principle[J]. Adv Healthc Mater, 2024, 13(9):e2303350.
80
Gornicki T, Lambrinow J, Golkar-Narenji A, et al. Biomimetic scaffolds-anovel approach to three dimensional cell culture techniques for potential implementation in tissue engineering[J]. Nanomaterials (Basel), 2024, 14(6):531.
81
Vo QD, Nakamura K, Saito Y, et al. iPSC-derived biological pacemaker-from bench to bedside[J]. Cells, 2024, 13(24):2045.
82
Treacy NJ, Clerkin S, Davis JL, et al. Growth and differentiation of human induced pluripotent stem cell (hiPSC)-derived kidney organoids using fully synthetic peptide hydrogels[J]. Bioact Mater, 2022, 21:142-156.
83
Huang Z, Jia K, Tan Y, et al. Advances in cardiac organoid research: implications for cardiovascular disease treatment[J]. Cardiovasc Diabetol, 2025, 24(1):25.
84
Mohr E, Thum T, Bar C. Accelerating cardiovascular research: recent advances in translational 2D and 3D heart models[J]. Eur J Heart Fail, 2022, 24(10):1778-1791.
[1] 郝玥萦, 毛盈譞, 张羽, 汪佳旭, 韩林霖, 匡雯雯, 孟瑶, 杨秀华. 超声引导衰减参数成像评估肝脂肪变性及其对心血管疾病风险的预测价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 770-777.
[2] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[3] 方伟超, 王晨, 刘馨然, 李宽, 侯浩斌, 陈伟, 李明哲, 何裕隆, 张常华. 通过构建胃癌类器官共培养模型探究嵌合抗原受体T细胞治疗与临床病理的关系[J/OL]. 中华普通外科学文献(电子版), 2025, 19(02): 89-95.
[4] 钟瀚翔, 郭闻渊, 殷浩, 赵渊宇, 丁国善. 扩充胰岛移植供体池的机遇与挑战[J/OL]. 中华移植杂志(电子版), 2025, 19(02): 120-127.
[5] 陈颖, 王一, 王璐, 孔德松, 章阳, 樊志敏. 结直肠癌类器官在中药及其有效成分研究中的应用进展[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(01): 47-52.
[6] 李超, 刘羽阳, 曹建森, 苏振东, 封亚平. 脊髓损伤后心血管系统功能障碍[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(06): 321-324.
[7] 刘丹, 张克石, 康清源, 袁平, 关振鹏. 生命早期危险因素暴露与成年期疾病的关系[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 520-525.
[8] 王玲洁, 王瑷萍, 李朝军, 丁跃有, 杨德业, 赵清, 崔兆强, 王京昆, 王宏宇. 心脏和血管健康技术创新研发策略专家共识(2024第一次报告,上海)[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 323-336.
[9] 王美琴, 潘海涛, 陈祥菲, 吴婉, 周昱和, 王砚青. S100B 蛋白在心血管疾病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 229-233.
[10] 王瑞, 张小杉, 魏颖, 王雅晳. 人工智能赋能心血管影像学在早期筛查与亚临床病变评估中的应用进展[J/OL]. 中华诊断学电子杂志, 2025, 13(03): 153-158.
[11] 陈公渊, 黄周青. 《2024年ESC肥胖与心血管疾病临床共识》解读[J/OL]. 中华心脏与心律电子杂志, 2025, 13(03): 140-148.
[12] 张建秀, 聂娇, 杜超. 基于结肠镜标本的结肠癌类器官构建技术及临床科研应用前景探究[J/OL]. 中华胃肠内镜电子杂志, 2025, 12(02): 126-129.
[13] 王学成. IVUS与OCT指导的急诊PCI治疗急性心肌梗死的临床效果比较[J/OL]. 中华卫生应急电子杂志, 2025, 11(04): 199-203.
[14] 王国峰, 吕舒, 肖金潭, 刘国力, 刘伯芹. 体重变异性与泛血管疾病关系的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2025, 11(02): 135-141.
[15] 宋宇佳, 孟化. 基于营养刺激激素受体靶点新型减重药物的临床研究现状与进展[J/OL]. 中华肥胖与代谢病电子杂志, 2025, 11(01): 33-39.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?