| 1 |
Leong DP, Joseph PG, McKee M, et al. Reducing the global burden of cardiovascular disease, part 2: prevention and treatment of cardiovascular disease[J]. Circ Res, 2017, 121(6):695-710.
|
| 2 |
Mensah GA, Fuster V, Murray CJL, et al. Global burden of cardiovascular diseases and risks, 1990-2022[J]. J Am Coll Cardiol, 2023, 82(25):2350-2473.
|
| 3 |
Qiu Y, Xu Q, Xie P, et al. Epigenetic modifications and emerging therapeutic targets in cardiovascular aging and diseases[J]. Pharmacol Res, 2025, 211:107546.
|
| 4 |
Jurado VJ, Anderson N, Datcher I, et al. Striving towards equity in cardiovascular genomics research[J]. Curr Atheroscler Rep, 2025, 27(1):34.
|
| 5 |
Laskary AR, Hudson JE, Porrello ER. Designing multicellular cardiac tissue engineering technologies for clinical translation[J]. Semin Cell Dev Biol, 2025, 171:103612.
|
| 6 |
Li P, Chang Y, Song J. Advances in preclinical surgical therapy of cardiovascular diseases[J]. Int J Surg, 2024, 110(8):4965-4975.
|
| 7 |
Dutta D, Heo I, Clevers H. Disease modeling in stem cell-derived 3D organoid systems[J]. Trends Mol Med, 2017, 23(5):393-410.
|
| 8 |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
|
| 9 |
Graffmann N, Adjaye J. Editorial for special issue: iPS cells (iPSCs) for modelling and treatment of human diseases[J]. Cells, 2022, 11(15): 2270.
|
| 10 |
Yu P, Liu B, Dong C, et al. Induced pluripotent stem cells-based regenerative therapies in treating human aging-related functional decline and diseases[J]. Cells, 2025, 14(8):619.
|
| 11 |
Mohite P, Puri A, Dave R, et al. Unlocking the therapeutic potential: odyssey of induced pluripotent stem cells in precision cell therapies[J]. Int J Surg, 2024, 110(10):6432-6455.
|
| 12 |
Du H, Huo Z, Chen Y, et al. Induced pluripotent stem cells and their applications in amyotrophic lateral sclerosis[J]. Cells, 2023, 12(6):971.
|
| 13 |
Pei H, Li H, Xu L, et al. Preferential hematopoietic differentiation in induced pluripotent stem cells derived from human umbilical cord arterial endothelialcells[J]. Arterioscler Thromb Vasc Biol, 2023, 43(5):697-712.
|
| 14 |
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications[J]. Signal Transduct Target Ther, 2024, 9(1):112.
|
| 15 |
Tavares-Marcos C, Correia M, Bernardes DJB. Telomeres as hallmarks of iPSC aging: a review on telomere dynamics during stemness and cellular reprogramming[J]. Ageing Res Rev, 2025, 109:102773.
|
| 16 |
Esteves F, Brito D, Rajado AT, et al. Reprogramming iPSCs to study age-related diseases: models, therapeutics, and clinical trials[J]. Mech Ageing Dev, 2023, 214:111854.
|
| 17 |
Yin X, Li Q, Shu Y, et al. Exploiting urine-derived induced pluripotent stem cells for advancing precision medicine in cell therapy, disease modeling, and drug testing[J]. J Biomed Sci, 2024, 31(1):47.
|
| 18 |
Lien CY, Chen TT, Tsai ET, et al. Recognizing the differentiation degree of human induced pluripotent stem cell-derived retinal pigment epithelium cells using machine learning and deep learning-based approaches[J]. Cells, 2023, 12(2):211.
|
| 19 |
Fang M, Allen A, Luo C, et al. Unlocking the potential of iPSC-derived immune cells: engineering iNK and iT cells for cutting-edge immunotherapy[J]. Front Immunol, 2024, 15:1457629.
|
| 20 |
Edwards MM, Wang N, Massey DJ, et al. Incomplete reprogramming of DNA replication timing in induced pluripotent stem cells[J]. Cell Rep, 2024, 43(1):113664.
|
| 21 |
McKenna DH, Perlingeiro R. Development of allogeneic iPS cell-based therapy: from bench to bedside[J]. EMBO Mol Med, 2023, 15(2):e15315.
|
| 22 |
Zhang L, Liang L, Su T, et al. Regulation of the keratocyte phenotype and cell behavior derived from human induced pluripotent stem cells by substrate stiffness[J]. ACS Biomater Sci Eng, 2023, 9(2):856-868.
|
| 23 |
Gong L, Zhang Y, Zhu Y, et al. Rapid generation of functional vascular organoids via simultaneous transcription factor activation of endothelial and mural lineages[J]. Cell Stem Cell, 2025, 32(8):1200-1217.e6.
|
| 24 |
Yang S, Hu H, Kung H, et al. Organoids: the current status and biomedical applications[J]. MedComm, 2023, 4(3):e274.
|
| 25 |
Naderi-Meshkin H, Cornelius VA, Eleftheriadou M, et al. Vascular organoids: unveiling advantages, applications, challenges, and disease modelling strategies[J]. Stem Cell Res Ther, 2023, 14(1):292.
|
| 26 |
张冰也, 吴羿霏, 杜新. 类器官技术在新药研发中的应用[J]. 药学进展, 2023, 11(47):849-863.
|
| 27 |
Zhou H, Ye P, Xiong W, et al. Genome-scale CRISPR-Cas9 screening in stem cells: theories, applications andchallenges[J]. Stem Cell Res Ther, 2024, 15(1):218.
|
| 28 |
Rao J, Song C, Hao Y, et al. Leveraging patient-derived organoids for personalized liver cancer treatment[J]. Int J Biol Sci, 2024, 20(13):5363-5374.
|
| 29 |
Huang S, Wu Y, Zhao H, et al. Advancements in bone organoids: perspectives on construction methodologies and application strategies[J]. J Adv Res, 2025, 11:S2090-1232(25)00397-2.
|
| 30 |
Ho YH, Liao Y, Liao L, et al. Advances of cell printing technology in organoid engineering[J]. Tissue Eng Part B Rev, 2025.
|
| 31 |
Mei J, Liu X, Tian HX, et al. Tumour organoids and assembloids: patient-derived cancer avatars for immunotherapy[J]. Clin Transl Med, 2024, 14(4):e1656.
|
| 32 |
Roberto DBN, Wang C, Maity S, et al. Engineered organoids for biomedical applications[J]. Adv Drug Deliv Rev, 2023, 203:115142.
|
| 33 |
Zhang T, Yang S, Ge Y, et al. Unveiling the heart's hidden enemy: dynamic insights into polystyrene nanoplastic-induced cardiotoxicity based on cardiac organoid-on-a-chip[J]. ACS Nano, 2024, 18(45): 31569-31585.
|
| 34 |
Li Y, Huang D, Zhang Y, et al. Microfluidic-assisted engineering of hydrogels with microscale complexity[J]. Acta Biomater, 2025, 199:1-17.
|
| 35 |
Abilez OJ, Yang H, Guan Y, et al. Gastruloids enable modeling of the earliest stages of human cardiac and hepatic vascularization[J]. Science, 2025, 388(6751):eadu9375.
|
| 36 |
Patino-Guerrero A, Ponce WR, Kodibagkar VD, et al. Development and characterization of isogenic cardiacorganoids from human-induced pluripotent stem cells under supplement starvation regimen[J]. ACS Biomater Sci Eng, 2023, 9(2):944-958.
|
| 37 |
Wang X, Luo Y, Ma Y, et al. Converging bioprinting and organoids to better recapitulate the tumor microenvironment[J]. Trends Biotechnol, 2024, 42(5):648-663.
|
| 38 |
Liu S, Fang C, Zhong C, et al. Recent advances in pluripotent stem cell-derived cardiac organoids and heart-on-chip applications for studying anti-cancer drug-induced cardiotoxicity[J]. Cell Biol Toxicol, 2023, 39(6):2527-2549.
|
| 39 |
Feyen D, McKeithan WL, Bruyneel A, et al. Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes[J]. Cell Rep, 2020, 32(3):107925.
|
| 40 |
Li J, Li Y, Song G, et al. Revolutionizing cardiovascular research: human organoids as a beacon of hope for understanding and treating cardiovascular diseases[J]. Mater Today Bio, 2025, 30:101396.
|
| 41 |
Hinson JT, Chopra A, Nafissi N, et al. HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy[J]. Science, 2015, 349(6251):982-986.
|
| 42 |
Prondzynski M, Lemoine MD, Zech AT, et al. Disease modeling of a mutation in alpha-actinin 2 guides clinical therapy in hypertrophic cardiomyopathy[J]. EMBO Mol Med, 2019, 11(12):e11115.
|
| 43 |
Shinnawi R, Shaheen N, Huber I, et al. Modeling reentry in the short QT syndrome with human-induced pluripotent stem cell-derived cardiac cell sheets[J]. J Am Coll Cardiol, 2019, 73(18):2310-2324.
|
| 44 |
Ye L, Liu J, Lei W, et al. Disruption of cTnT-mediated sarcomere-mitochondrial communication results in dilated cardiomyopathy[J]. Circulation, 2025, 152(6):397-415.
|
| 45 |
Voges HK, Foster SR, Reynolds L, et al. Vascular cells improve functionality of human cardiac organoids[J]. Cell Rep, 2023, 42(5): 112322.
|
| 46 |
Du X, Jia H, Chang Y, et al. Progress of organoid platform in cardiovascular research[J]. Bioact Mater, 2024, 40:88-103.
|
| 47 |
Thomas D, Noishiki C, Gaddam S, et al. CCL2-mediated endothelial injury drives cardiac dysfunction in long COVID[J]. Nat Cardiovasc Res, 2024, 3(10):1249-1265.
|
| 48 |
Wimmer RA, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy[J]. Nature, 2019, 565(7740):505-510.
|
| 49 |
Kong D, Ryu JC, Shin N, et al. In vitromodeling of atherosclerosis using iPSC-derived blood vessel organoids[J]. Adv Healthc Mater, 2025, 14(1):e2400919.
|
| 50 |
Mallick S, Chakrabarti J, Eschbacher J, et al. Genetically engineered human pituitary corticotroph tumor organoids exhibit divergent responses to glucocorticoid receptor modulators[J]. Transl Res, 2023, 256:56-72.
|
| 51 |
Tu C, Cunningham NJ, Zhang M, et al. Human induced pluripotent stem cells as a screening platform for drug-induced vascular toxicity[J]. Front Pharmacol, 2021, 12:613837.
|
| 52 |
Xue G, Li X, Kalim M, et al. Clinical drug screening reveals clofazimine potentiates the efficacy while reducing the toxicity of anti-PD-1 and CTLA-4 immunotherapy[J]. Cancer Cell, 2024, 42(5):780-796.e6.
|
| 53 |
Tirgar P, Vikstrom A, Sepulveda J, et al. Heart-on-a-miniscope: a miniaturized solution for electrophysiological drug screening in cardiac organoids[J]. Small, 2025, 21(6):e2409571.
|
| 54 |
Wang B, Ganjee R, Khandaker I, et al. Deep learning based characterization of human organoids using optical coherence tomography[J]. Biomed Opt Express, 2024, 15(5):3112-3127.
|
| 55 |
Kowalczewski A, Sun S, Mai NY, et al. Design optimization of geometrically confined cardiac organoids enabled by machine learning techniques[J]. Cell Rep Methods, 2024, 4(6):100798.
|
| 56 |
Shi R, Reichardt M, Fiegle DJ, et al. Contractility measurements for cardiotoxicity screening with ventricular myocardial slices of pigs[J]. Cardiovasc Res, 2023, 119(14):2469-2481.
|
| 57 |
Woo LA, Wintruba KL, Wissmann B, et al. Multi-omic analysis reveals VEGFR2, PI3K, and JNK mediate the small molecule induction of human iPSC-derived cardiomyocyte proliferation[J]. iScience, 2024, 27(8):110485.
|
| 58 |
Bissoli I, Alabiso F, Cosentino C, et al. Modeling heart failure by induced pluripotent stem cell-derived organoids[J]. Biochim Biophys Acta Mol Basis Dis, 2025, 1871(6):167861.
|
| 59 |
Fang Y, Jo SK, Park SJ, et al. Role of the circadian clock and effect of time-restricted feeding in adenine-induced chronic kidney disease[J]. Lab Invest, 2023, 103(1):100008.
|
| 60 |
Tian Y, Tsujisaka Y, Li VY, et al. Immunosuppressants tacrolimus and sirolimus revert the cardiac antifibrotic properties of p38-MAPK inhibition in 3D-multicellular human iPSC-heart organoids[J]. Front Cell Dev Biol, 2022, 10:1001453.
|
| 61 |
Sun D, Zhang K, Zheng F, et al. Matrix viscoelasticity controls differentiation of human blood vessel organoids into arterioles and promotes neovascularization in myocardial infarction[J]. Adv Mater, 2025, 37(5):e2410802.
|
| 62 |
Perea-Gil I, Seeger T, Bruyneel A, et al. Serine biosynthesis as a novel therapeutic target for dilated cardiomyopathy[J]. Eur Heart J, 2022, 43(36):3477-3489.
|
| 63 |
Bai B, Li J, Wang Z, et al. Neural organoids protect engineered heart tissues from glucolipotoxicity by transferring versican in a co-culture system[J]. Cell Prolif, 2025, 3:e70070.
|
| 64 |
Ghosheh M, Ehrlich A, Ioannidis K, et al. Electro-metabolic coupling in multi-chambered vascularized human cardiac organoids[J]. Nat Biomed Eng, 2023, 7(11):1493-1513.
|
| 65 |
Gu B, Han K, Cao H, et al. Heart-on-a-chip systems with tissue-specific functionalities for physiological, pathological, and pharmacological studies[J]. Mater Today Bio, 2023, 24:100914.
|
| 66 |
Liu Y, Zheng J, Zhong L, et al. Vessel-on-a-chip coupled proteomics reveal pressure-overload-induced vascular remodeling[J]. Adv Sci (Weinh), 2025, 12(19):e2415024.
|
| 67 |
Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans[J]. Science, 2009, 324(5923):98-102.
|
| 68 |
Varzideh F, Pahlavan S, Ansari H, et al. Human cardiomyocytes undergo enhanced maturation in embryonic stem cell-derived organoid transplants[J]. Biomaterials, 2019, 192:537-550.
|
| 69 |
Wimmer RA, Leopoldi A, Aichinger M, et al. Generation of blood vessel organoids from human pluripotent stem cells[J]. Nat Protoc, 2019, 14(11):3082-3100.
|
| 70 |
Miyagawa S, Kainuma S, Kawamura T, et al. Case report: transplantation of human induced pluripotent stem cell-derived cardiomyocyte patches for ischemic cardiomyopathy[J]. Front Cardiovasc Med, 2022, 9:950829.
|
| 71 |
Chang D, Wen Z, Wang Y, et al. Ultrastructural features of ischemic tissue following application of a bio-membrane based progenitor cardiomyocyte patch for myocardial infarction repair[J]. PLoS One, 2014, 9(10):e107296.
|
| 72 |
Tan Y, Coyle RC, Barrs RW, et al. Nanowired human cardiac organoid transplantation enables highly efficient and effective recovery of infarcted hearts[J]. Sci Adv, 2023, 9(31):eadf2898.
|
| 73 |
Yu F, Liu F, Liang X, et al. iPSC-derived airway epithelial cells: progress, promise, and challenges[J]. Stem Cells, 2023, 41(1):1-10.
|
| 74 |
Suchy F, Yamaguchi T, Nakauchi H. iPSC-derived organs in vivo: challenges and promise[J]. Cell Stem Cell, 2018, 22(1):21-24.
|
| 75 |
Hwang JW, Desterke C, Feraud O, et al. iPSC-derived embryoid bodies as models of c-met-mutated hereditary papillary renal cell carcinoma[J]. Int J Mol Sci, 2019, 20(19):4867.
|
| 76 |
Nath SC, Menendez L, Friedrich BI. Overcoming the variability of iPSCs in the manufacturing of cell-based therapies[J]. Int J Mol Sci, 2023, 24(23):16929.
|
| 77 |
Pavon N, Sun Y, Pak C. Cell type specification and diversity in subpallial organoids[J]. Front Genet, 2024, 15:1440583.
|
| 78 |
Cai H, Tian C, Chen L, et al. Vascular network-inspired diffusible scaffolds for engineering functional midbrain organoids[J]. Cell Stem Cell, 2025, 32(5):824-837.e5.
|
| 79 |
Zieger, Frejek D, Zimmermann S, et al. Towards automation in 3D cell culture: selective and gentle high-throughput handling of spheroids and organoids via novel pick-flow-drop principle[J]. Adv Healthc Mater, 2024, 13(9):e2303350.
|
| 80 |
Gornicki T, Lambrinow J, Golkar-Narenji A, et al. Biomimetic scaffolds-anovel approach to three dimensional cell culture techniques for potential implementation in tissue engineering[J]. Nanomaterials (Basel), 2024, 14(6):531.
|
| 81 |
Vo QD, Nakamura K, Saito Y, et al. iPSC-derived biological pacemaker-from bench to bedside[J]. Cells, 2024, 13(24):2045.
|
| 82 |
Treacy NJ, Clerkin S, Davis JL, et al. Growth and differentiation of human induced pluripotent stem cell (hiPSC)-derived kidney organoids using fully synthetic peptide hydrogels[J]. Bioact Mater, 2022, 21:142-156.
|
| 83 |
Huang Z, Jia K, Tan Y, et al. Advances in cardiac organoid research: implications for cardiovascular disease treatment[J]. Cardiovasc Diabetol, 2025, 24(1):25.
|
| 84 |
Mohr E, Thum T, Bar C. Accelerating cardiovascular research: recent advances in translational 2D and 3D heart models[J]. Eur J Heart Fail, 2022, 24(10):1778-1791.
|