34 |
Barile L, Milano G, Vassalli G. Beneficial effects of exosomes secreted by cardiac-derived progenitor cells and other cell types in myocardial ischemia[J]. Stem Cell Investig, 2017, 4:93.
|
35 |
Menasche P, Vanneaux V, Hagege A, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report[J]. Eur Heart J, 2015, 36(30):2011-2017.
|
36 |
Menasché P, Vanneaux V, Hagège A, et al. Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction[J]. J Am Coll Cardiol, 2018, 71(4):429-438.
|
37 |
Trac D, Xu CH, Davis ME. Aggregation of child cardiac progenitor cells into spheres activates notch signaling and improves treatment of right ventricular heart failure[J]. Circulation, 2017, 136(1):526-538.
|
1 |
Birket MJ, Mummery CL. Pluripotent stem cell derived cardiovascular progenitors-A developmental perspective[J]. Dev Biol, 2015, 400(2):169-179.
|
2 |
Le T, Chong J. Cardiac progenitor cells for heart repair[J]. Cell Death Discov, 2016, 2:16052.
|
3 |
Zhou B, Wu SM. Reassessment of c-Kit in cardiac cells a complex interplay between expression, fate, and function[J]. Circ Res, 2018, 123(1):9-11.
|
4 |
Maliken BD, Molkentin JD. Undeniable evidence that the adult mammalian heart lacks an endogenous regen-erative stem cell[J]. Circulation, 2018, 138(8):806-808.
|
5 |
Waring CD, Vicinanza C, Papalamprou AA, et al. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation[J]. Eur Heart J, 2014, 35(39, SI):2722-2731.
|
6 |
Chiapparo G, Lin XH, Lescroart FA, et al. Mesp1 controls the speed, polarity, and directionality of cardiovascular progenitor migration[J]. J Cell Biol, 2016, 213(4):463-477.
|
7 |
Bondue A, Tännler S, Chiapparo G, et al. Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation[J]. J Cell Biol, 2011, 192(5):751-765.
|
8 |
Den Hartogh SC, Schreurs C, Monshouwer-Kloots JJ, et al. Dual reporter MESP1(mCherry/w)-NKX2-5 (eGFP/w) hESCs enable studying early human cardiac differentiation[J]. Stem Cells, 2015, 33(1):56-67.
|
9 |
Wu SM, Fujiwara Y, Cibulsky SM, et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart[J]. Cell, 2006, 127(6):1137-1150.
|
10 |
Watanabe Y, Zaffran S, Kuroiwa A, et al. Fibroblast growth factor 10 gene regulation in the second heart field by Tbx1, Nkx2-5, and Islet1 reveals a genetic Switch for down-regulation in the myocardium[J]. Proc Natl Acad Sci U S A, 2012, 109(45):18273-18280.
|
11 |
Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration[J]. Cell, 2003, 114(6):763-776.
|
12 |
Nadal-Ginard B, Ellison GM, Torella D. Absence of evidence is not evidence of absence pitfalls of cre knock-ins in the c-Kit locus[J]. Circ Res, 2014, 115(4):415-418.
|
13 |
van Berlo JH, Kanisicak O, Maillet M, et al. C-kit(+) cells minimally contribute cardiomyocytes to the heart[J]. Nature, 2014, 509(7500): 337-341.
|
14 |
Sultana N, Zhang L, Yan J, et al. Resident c-kit(+) cells in the heart are not cardiac stem cells[J]. Nat Commun, 2015, 6:8701.
|
15 |
Liu QZ, Yang R, Huang XZ, et al. Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes[J]. Cell Res, 2016, 26(1):119-130.
|
16 |
He L, Li Y, Li Y, et al. Enhancing the precision of genetic lineage tracing using dual recombinases[J]. Nat Med, 2017, 23(12):1488-1498.
|
17 |
Yoon C, Song H, Yin T, et al. FZD4 marks lateral plate mesoderm and signals with NORRIN to increase cardiomyocyte induction from pluripotent stem Cell-Derived cardiac progenitors[J]. Stem Cell Reports, 2018, 10(1):87-100.
|
18 |
Skelton RJ, Brady B, Khoja S, et al. CD13 and ROR2 permit isolation of highly enriched cardiac mesoderm from differentiating human embryonic stem cells[J]. Stem Cell Reports, 2016, 6(1):95-108.
|
19 |
Skelton RJ, Costa M, Anderson DJ, et al. SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development[J]. Stem Cell Res, 2014, 13(1):172-179.
|
20 |
Noseda M, Peterkin T, Simões FC, et al. Cardiopoietic factors: extracellular signals for cardiac lineage commitment[J]. Circ Res, 2011, 108(1): 129-152.
|
21 |
Cai WQ, Albini S, Wei K, et al. Coordinate nodal and BMP inhibition directs Baf60c-dependent cardiomyocyte commitment[J]. Genes Dev, 2013, 27(21):2332-2344.
|
22 |
Cao N, Liang H, Huang J, et al. Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions[J]. Cell Res, 2013, 23(9):1119-1132.
|
23 |
Burridge PW, Keller G, Gold JD, et al. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming[J]. Cell Stem Cell, 2012, 10(1):16-28.
|
24 |
Sirbu IO, Zhao X, Duester G. Retinoic acid controls heart anteroposterior patterning by down-regulating Isl1 through the Fgf8 pathway[J]. Dev Dyn, 2008, 237(6):1627-1635.
|
25 |
Novikov N, Evans T. Tmem88a mediates GATA-dependent specification of cardiomyocyte progenitors by restricting WNT signaling[J]. Development, 2013, 140(18):3787-3798.
|
26 |
Zhang Y, Cao N, Huang Y, et al. Expandable cardiovascular progenitor cells reprogrammed from fibroblasts[J]. Cell Stem Cell, 2016, 18(3): 368-381.
|
27 |
Birket MJ, Ribeiro MC, Verkerk AO, et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells [J]. Nat Biotechnol, 2015, 33(9):970-979.
|
28 |
Lalit PA, Salick MR, Nelson DO, et al. Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors[J]. Cell Stem Cell, 2016, 18(3):354-367.
|
29 |
Puente BN, Kimura W, Muralidhar SA, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response[J]. Cell, 2014, 157(3):565-579.
|
30 |
Wang WE, Li L, Xia X, et al. Dedifferentiation,proliferation and redifferentiation of adult mammalian cardio-myocytes after ischemic injury[J]. Circulation, 2017, 136(9):834-848.
|
31 |
Sinha S, Iyer D, Granata A. Embryonic origins of human vascular smooth muscle cells: implications for in vitro modeling and clinical application[J]. Cell Mol Life Sci, 2014, 71(12):2271-2288.
|
32 |
Liu Y, Chen L, Diaz AD, et al. Mesp1 marked cardiac progenitor cells repair infarcted mouse hearts[J]. Sci Rep, 2016, 6(1):1-14.
|
33 |
Zhu KY, Wu Q, Ni C, et al. Lack of remuscularization following transplantation of human embryonic stem cell-derived cardiovascular progenitor cells in infarcted nonhuman primates[J]. Circ Res, 2018, 122(7):958-969.
|