切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (02) : 124 -128. doi: 10.3877/cma.j.issn.2095-1221.2019.02.010

综述

造血生长因子在急性辐射损伤治疗中的作用
李跃彤1, 黄平平2,()   
  1. 1. 301617 天津中医药大学研究生院
    2. 300020 天津,中国医学科学院血液病医院(血液学研究所)
  • 收稿日期:2019-01-22 出版日期:2019-04-01
  • 通信作者: 黄平平
  • 基金资助:
    中国医学科学院医学与健康科技创新工程经费资助(2017-I2M-1-016)

Role of hematopoietic growth factor in the treatment of acute radiation injury

Yuetong Li1, Pingping Huang2,()   

  1. 1. Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
    2. Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China
  • Received:2019-01-22 Published:2019-04-01
  • Corresponding author: Pingping Huang
引用本文:

李跃彤, 黄平平. 造血生长因子在急性辐射损伤治疗中的作用[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(02): 124-128.

Yuetong Li, Pingping Huang. Role of hematopoietic growth factor in the treatment of acute radiation injury[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(02): 124-128.

急性辐射损伤常见于核战争或核电站事故,是严重威胁人类健康的主要疾病之一。因此辐射防护剂的研发与应用已成为应对辐射威胁的首要任务。造血生长因子对于诱导、促进造血细胞的增殖和分化具有重要作用,是治疗急性辐射综合征的一种有效对策。近年来,应用造血生长因子治疗急性辐射损伤获得了较好的临床疗效并积累了丰富的经验。但是,对其治疗急性辐射损伤的机制研究,用药时机、剂量及合理的配伍等问题,需进一步探讨和总结,本文对此研究现状及进展做一综述。

Acute radiation damage caused by nuclear wars or nuclear power plant accidents is one of the major diseases that seriously threaten human health. Therefore, the development and application of radioprotectants have become the primary task in dealing with radiation threats. Hematopoietic growth factor plays an important role in inducing and promoting the proliferation and differentiation of hematopoietic cells. It is an effective strategy for the treatment of acute radiation syndrome. In recent years, the application of hematopoietic growth factor in the treatment of acute radiation injury has achieved satisfactory clinical efficacy and accumulated rich experience. However, the research on the treatment mechanism of acute radiation damage, the timing of the drug, the dose and the reasonable compatibility need to be further discussed and summarized. This paper reviews the current status and progress of this research.

表1 核辐射事故中造血生长因子使用情况列表
1
Dainiak N. Medical management of acute radiation syndrome and associated infections in a high-casualty incident[J]. J Radiat Res, 2018, 59(suppl_2):ii54-ii64.
2
Christensen DM, Livingston GK, Sugarman SL, et al. Management of ionizing radiation injuries and illnesses,part 3:radiobiology and health effects of ionizing radiation[J]. J Am Osteopath Assoc, 2014, 114(7):556-565.
3
Farese AM, MacVittie TJ. Filgrastim for the treatment of hematopoietic acute radiation syndrome[J]. Drugs Today(Barc), 2015, 51(9):537-548.
4
Singh VK, Seed TM. An update on sargramostim for treatment of acute radiation syndrome[J]. Drugs Today (Barc), 2018, 54(11):679-693.
5
Singh VK, Romaine PL, Newman VL. Medical countermeasures for unwanted CBRN exposures: part II radiological and nuclear threats with review of recent countermeasure patents[J]. Expert Opin Ther Pat, 2016, 26(12):1399-1408.
6
Singh VK, Newman VL, Seed TM. Colony-stimulating factors for the treatment of the hematopoietic compartment of the acute radiation syndrome(H-ARS):A review[J]. Cytokine, 2015 (71):22-37.
7
Gill H, Wong RS, Kwong YL. From chronic immune thrombocytopenia to severe aplastic anemia: recent insights into the evolution of eltrombopag[J]. Ther Adv Hematol, 2017, 8(5):159-174.
8
Grivtsova LY, Melkova KN, Kupryshkina NA, et al. G-CSF-primed autologous and allogeneic bone marrow for transplantation in clinical oncology. Cell content and immunological characteristics[C] Journal of Physics Conference Series, 2018.
9
Link H, Kerkmann M, Holtmann L, et al. G-CSF guideline adherence in Germany, an update with a retrospective and representative sample survey[J]. Support Care Cancer, 2019, 27(4):1459-1469.
10
Busca A, Cesaro S, Teofili L, et al. SEIFEM 2017: from real Life to an agreement on the use of granulocyte transfusions and colony-stimulating factors for prophylaxis and treatment of infectious complications in patients with hematologic malignant disorders[J]. Expert Rev Hematol, 2018, 11(2):155-168.
11
Hofer M, Hoferová Z, Falk M. Pharmacological modulation of radiation damage. Does it exist a chance for other substances than hematopoietic growth factors and cytokines?[J]. Int J Mol Sci, 2017, 18(7). pii: E1385.
12
Moroni, M, Ngudiankama BF, Christensen C, et al. The Gottingen minipig is a model of the hematopoietic acute radiation syndrome: G-colony stimulating factor stimulates hematopoiesis and enhances survival from lethal total-body γ-irradiation[J]. Int J Radiat Oncol Biol Phys, 2013, 86(5):986-992.
13
Drouet M, Delaunay C, Grenier N, et al. Cytokines in combination to treat radiation-induced myelosuppresssion: evaluation of SCF + glycosylated EPO + pegylated G-CSF as an emergency treatment in highly irradiated monkeys[J]. Haematologica, 2008, 93(3):465-466.
14
Legesse B, Kaur A, Kenchegowda D, et al. Neulasta regimen for the hematopoietic acute radiation syndrome: effects beyond neutrophil recovery[J]. Int J Radiat Oncol Biol Phys, 2019, 103(4):935-944.
15
Galal SM, Abdel-Rafei MK, Hasan HF. Cholinergic and cytoprotective signaling cascades mediate the mitigative effect of erythropoietin on acute radiation syndrome[J]. Can J Physiol Pharmacol, 2018, 96 (5):442-458.
16
Kim JH, Thimmulappa RK, Kumar V, et al. NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation[J]. J Clin Invest, 2014, 124(2):730-741.
17
Metcalf D, Nicola NA. Proliferative effects of purified granulocyte colony-stimulating factor (G-CSF) on normal mouse hemopoietic cells[J]. J Cell Physiol, 1983, 116(2):198-206.
18
Patchen ML, Macvittie TJ, Solberg BD, et al. Therapeutic administration of recombinant human granulocyte colony-stimulating factor accelerates hemopoietic regeneration and enhances survival in a murine model of radiation-induced myelosuppression[J]. Int J Cell Cloning, 1990, 8(2):107-122.
19
Macvittie TJ, Monroy RL, Patchen ML, et al. Therapeutic use of recombinant human G-CSF(rhG-CSF) in a canine model of sublethal and lethal whole-body irradiation[J]. Int J Radiat Biol, 1990, 57(4):723-736.
20
Farese AM, Hunt P, Grab LB, et al. Combined administration of recombinant human megakeryocyte growth and development factor and granulocyte colony-stimulating factor enhances multilimeagenematopoieticreconstimulating factor enhances multilineage hematopoietic reconstitution in nonhuman primates after rediation-induced marrow aplasia[J]. J Clin Invest, 1996, 97 (9):2145-2151.
21
罗庆良,Neelis KJWagemaker G. 重组人血小板生长因子和重组人粒细胞集落刺激因子对急性放射病猴的治疗作用[J]. 中华放射医学与防护杂志, 1999, 19(1):34-38.
22
Wang C, Zhang B, Wang S, et al. Recombinant human thrombopoietin promotes hematopoietic reconstruction after severe whole body irradiation[J]. Sci Rep, 2015, 5:12993.
23
Rozhdestvenskiĭ LM, Shliakova TG, Shchegoleva RA, et al. Recombinant thrombopoietin antiradiation therapeutic effectiveness evaluation on dogs according to hemopoiesis and survival criteria[J]. Radiats Biol Radioecol, 2013, 53(3):280-289.
24
Gluzman-Poltorak Z, Vainstein V, Basile LA. Recombinant interleukin-12, but not granulocyte-colony stimulating factor, improves survival in lethally irradiated nonhuman primates in the absence of supportive care: evidence for the development of a frontline radiation medical countermeasure[J]. Am J Hematol, 2014, 89(9):868-873.
25
Fish BL, MacVittie TJ, Szabo A, et al. WAG/RijCmcr rat models for injuries to multiple organs by single high dose ionizing radiation: similarities to non-human primates(NHP)[J]. Int J Radiat Biol, 2018, 21:1-42.
26
Singh VK, Olabisi AO. Nonhuman primates as models for the discovery and development of radiation countermeasures[J]. Expert Opin Drug Discov, 2017, 12(7):695-709.
27
Butturini A, De Souza PC, Gale RP, et al. Use of recombinant granulocyte-macrophage colony stimulating factor in the Brazil radiation accident[J]. Lancet, 1988, 2(8609):471-475.
28
戴宏,蒲汪旸,陈学英, 等. 南京"5.7"192Ir源放射事故患者的临床救治[J]. 中华放射医学与防护杂志, 2016, 36(5):324-330.
29
Gourmelon P, Benderitter M, Bertho JM, et al. European consensus on the medical management of acute radiation syndrome and analysis of the radiation accidents in Belgium and Senegal[J]. Health Phys, 2010, 98(6):825-832.
30
Hirama T, Tanosaki S, Kandatsu S, et al. Initial medical management of patients severely irradiated in the Tokai-mura criticality accident[J]. Br J Radiol, 2003, 76(94):246-253.
31
Engin VS, Tufan F, Besisik SK, et al. Hematological aftermath of the radiation accident in Istanbul[J]. Int J Radiat Biol, 2015, 91(9):724-731.
32
Liu Q, Jiang B, Jiang LP, et al. Clinical report of three cases of acute radiation sickness from a (60)Co radiation accident in Henan Province in China[J]. J Radiat Res, 2008, 49(1):63-69.
33
Farese AM, Bennett AW, Gibbs AM, et al. Efficacy of neulasta or neupogen on H-ARS and GI-ARS mortality and hematopoietic recovery in nonhuman primates after 10 Gy irradiation with 2.5% bone-marrow sparing[J]. Health Phys, 2019, 116(3):339-353.
34
Macvittie TJ, Farese AM, Parker GA, et al. The time course of radiation-induced lung injury in a nonhuman primate model of partial-body irradiation with minimal bone marrow sparing:clinical and radiographic evidence and the effect of neupogen administration[J]. Health Phy, 2019, 116(3):366-382.
35
Sanzari JK, Krigsfeld GS, Shuman AL, et al. Effects of a granulocyte colony stimulating factor, Neulasta, in mini pigs exposed to total body proton irradiation[J]. Life Sci Space Res (Amst), 2015, 5:13-20.
36
Chen TL, Chiang YW, Lin GL, et al. Different effects of granulocyte colony-stimulating factor and erythropoietin on erythropoiesis[J]. Stem Cell Res Ther, 2018, 9(1):119.
37
Singh VK, Newman VL, Berg AN, et al. Animal models for acute radiation syndrome drug discovery[J]. Expert Opin Drug Discov, 2015, 10(5):497-517.
38
Satyamitra M, Kumar VP, Biswas S, et al. Impact of abbreviated filgrastim schedule on survival and hematopoietic recovery after irradiation in four mouse strains with different radiosensitivity[J]. Radiat Res, 2017, 187(6):659-671.
39
Plett PA, Chua HL, Sampson CH, et al. PEGylated G-CSF(BBT-015), GM-CSF(BBT-007), AND IL-11(BBT-059)analogs enhance survival and hematopoietic cell recovery in a mouse model of the hematopoietic syndrome of the acute radiation syndrome[J]. Health Phys, 2014, 106(1):7-20.
40
Weiss JF, Kumar KS, Walden TL, et al. Advances in radioprotection through the use of combined agent regimens[J]. Int J Radiat Biol, 1990, 57(4):709-722.
41
Kiang JG, Zhai M, Bolduc DL, et al. Combined therapy of pegylated G-CSF and Alxn4100TPO improves survival and mitigates acute radiation syndrome after whole-body ionizing irradiation alone and followed by wound trauma[J]. Radiat Res, 2017, 188(5):476-490.
42
Jiang S, Shen X, Liu Y, et al. Radioprotective effects of Sipunculus nudus L.polysaccharide combined with WR-2721, rhIL-11 and rhG-CSF on radiation-injured mice[J]. J Radiat Res, 2015, 56(3):515-522.
43
Li C, Lu L, Zhang J, et al. Granulocyte colony-stimulating factor exacerbates hematopoietic stem cell injury after irradiation[J]. Cell Biosci, 2015, 5:65.
44
Machan M, Matthys B, Fraga GR. Pegfilgrastim-induced Sweet's syndrome: a case report[J]. Int J Dermatol, 2014, 53(10):1275-1277.
45
Reeves, G. Overview of use of G-CSF and GM-CSF in the treatment of acute radiation injury[J]. Health Phys, 2014, 106(6):699-703.
[1] 陆婷, 范晴敏, 王洁, 万晓静, 许春芳, 董凤林. 超声引导下经皮穿刺置管引流对重症急性胰腺炎的疗效及应用时机的选择[J]. 中华医学超声杂志(电子版), 2024, 21(05): 511-516.
[2] 孙勇, 彭曦. 重视烧伤创面愈合中的葡萄糖代谢以优化营养治疗策略[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 277-281.
[3] 周清洁, 蒋萍萍, 梁云, 李琰. 脂质水胶体技术在创面愈合中的应用进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 360-363.
[4] 王宇, 徐芳泉, 周旋, 姚晓峰, 李强. 不断提高分化型甲状腺癌根治性切除规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 473-476.
[5] 孙辉, 李长霖. 分化型甲状腺癌根治性切除术中的关键考量与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 477-481.
[6] 张腾花, 尚培中, 王晓梅, 李晓武, 王金, 苗建军, 刘冰. 外伤性脾破裂三阶梯分层治疗策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 510-512.
[7] 高建新, 王啸飞, 于淼, 路夷平. 局部进展期直肠癌新辅助治疗后行ISR术远切缘距离的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 539-543.
[8] 李阳, 董峰, 曾立鹏. 局部进展期直肠癌新辅助治疗后腹腔镜TaTME与TME中的对比研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 547-550.
[9] 刘连新, 孟凡征. 不断提高腹腔镜解剖性肝切除的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 355-358.
[10] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[11] 李飞, 郑灶松, 吴芃, 谭万龙. 广东省医学会泌尿外科疑难病例多学科会诊(第16期)——延胡索酸水合酶缺陷型晚期肾细胞癌[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 410-414.
[12] 中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版)[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 407-449.
[13] 马虹宇, 陈元武, 张明明, 岳向勇, 檀碧波. 平胃散加味联合毫火针对直肠癌患者化学治疗致胃肠道反应的疗效[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 297-300.
[14] 袁捷, 乔钰琪, 李彦冬. 二甲双胍、来曲唑联合地屈孕酮治疗多囊卵巢综合征合并不孕症的效果评价[J]. 中华临床医师杂志(电子版), 2024, 18(04): 343-347.
[15] 楚海强, 杨远游, 任刚. 胰腺癌放射治疗联合其他治疗方法的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(04): 392-396.
阅读次数
全文


摘要