1 |
Dainiak N. Medical management of acute radiation syndrome and associated infections in a high-casualty incident[J]. J Radiat Res, 2018, 59(suppl_2):ii54-ii64.
|
2 |
Christensen DM, Livingston GK, Sugarman SL, et al. Management of ionizing radiation injuries and illnesses,part 3:radiobiology and health effects of ionizing radiation[J]. J Am Osteopath Assoc, 2014, 114(7):556-565.
|
3 |
Farese AM, MacVittie TJ. Filgrastim for the treatment of hematopoietic acute radiation syndrome[J]. Drugs Today(Barc), 2015, 51(9):537-548.
|
4 |
Singh VK, Seed TM. An update on sargramostim for treatment of acute radiation syndrome[J]. Drugs Today (Barc), 2018, 54(11):679-693.
|
5 |
Singh VK, Romaine PL, Newman VL. Medical countermeasures for unwanted CBRN exposures: part II radiological and nuclear threats with review of recent countermeasure patents[J]. Expert Opin Ther Pat, 2016, 26(12):1399-1408.
|
6 |
Singh VK, Newman VL, Seed TM. Colony-stimulating factors for the treatment of the hematopoietic compartment of the acute radiation syndrome(H-ARS):A review[J]. Cytokine, 2015 (71):22-37.
|
7 |
Gill H, Wong RS, Kwong YL. From chronic immune thrombocytopenia to severe aplastic anemia: recent insights into the evolution of eltrombopag[J]. Ther Adv Hematol, 2017, 8(5):159-174.
|
8 |
Grivtsova LY, Melkova KN, Kupryshkina NA, et al. G-CSF-primed autologous and allogeneic bone marrow for transplantation in clinical oncology. Cell content and immunological characteristics[C] Journal of Physics Conference Series, 2018.
|
9 |
Link H, Kerkmann M, Holtmann L, et al. G-CSF guideline adherence in Germany, an update with a retrospective and representative sample survey[J]. Support Care Cancer, 2019, 27(4):1459-1469.
|
10 |
Busca A, Cesaro S, Teofili L, et al. SEIFEM 2017: from real Life to an agreement on the use of granulocyte transfusions and colony-stimulating factors for prophylaxis and treatment of infectious complications in patients with hematologic malignant disorders[J]. Expert Rev Hematol, 2018, 11(2):155-168.
|
11 |
Hofer M, Hoferová Z, Falk M. Pharmacological modulation of radiation damage. Does it exist a chance for other substances than hematopoietic growth factors and cytokines?[J]. Int J Mol Sci, 2017, 18(7). pii: E1385.
|
12 |
Moroni, M, Ngudiankama BF, Christensen C, et al. The Gottingen minipig is a model of the hematopoietic acute radiation syndrome: G-colony stimulating factor stimulates hematopoiesis and enhances survival from lethal total-body γ-irradiation[J]. Int J Radiat Oncol Biol Phys, 2013, 86(5):986-992.
|
13 |
Drouet M, Delaunay C, Grenier N, et al. Cytokines in combination to treat radiation-induced myelosuppresssion: evaluation of SCF + glycosylated EPO + pegylated G-CSF as an emergency treatment in highly irradiated monkeys[J]. Haematologica, 2008, 93(3):465-466.
|
14 |
Legesse B, Kaur A, Kenchegowda D, et al. Neulasta regimen for the hematopoietic acute radiation syndrome: effects beyond neutrophil recovery[J]. Int J Radiat Oncol Biol Phys, 2019, 103(4):935-944.
|
15 |
Galal SM, Abdel-Rafei MK, Hasan HF. Cholinergic and cytoprotective signaling cascades mediate the mitigative effect of erythropoietin on acute radiation syndrome[J]. Can J Physiol Pharmacol, 2018, 96 (5):442-458.
|
16 |
Kim JH, Thimmulappa RK, Kumar V, et al. NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation[J]. J Clin Invest, 2014, 124(2):730-741.
|
17 |
Metcalf D, Nicola NA. Proliferative effects of purified granulocyte colony-stimulating factor (G-CSF) on normal mouse hemopoietic cells[J]. J Cell Physiol, 1983, 116(2):198-206.
|
18 |
Patchen ML, Macvittie TJ, Solberg BD, et al. Therapeutic administration of recombinant human granulocyte colony-stimulating factor accelerates hemopoietic regeneration and enhances survival in a murine model of radiation-induced myelosuppression[J]. Int J Cell Cloning, 1990, 8(2):107-122.
|
19 |
Macvittie TJ, Monroy RL, Patchen ML, et al. Therapeutic use of recombinant human G-CSF(rhG-CSF) in a canine model of sublethal and lethal whole-body irradiation[J]. Int J Radiat Biol, 1990, 57(4):723-736.
|
20 |
Farese AM, Hunt P, Grab LB, et al. Combined administration of recombinant human megakeryocyte growth and development factor and granulocyte colony-stimulating factor enhances multilimeagenematopoieticreconstimulating factor enhances multilineage hematopoietic reconstitution in nonhuman primates after rediation-induced marrow aplasia[J]. J Clin Invest, 1996, 97 (9):2145-2151.
|
21 |
罗庆良,Neelis KJ,Wagemaker G. 重组人血小板生长因子和重组人粒细胞集落刺激因子对急性放射病猴的治疗作用[J]. 中华放射医学与防护杂志, 1999, 19(1):34-38.
|
22 |
Wang C, Zhang B, Wang S, et al. Recombinant human thrombopoietin promotes hematopoietic reconstruction after severe whole body irradiation[J]. Sci Rep, 2015, 5:12993.
|
23 |
Rozhdestvenskiĭ LM, Shliakova TG, Shchegoleva RA, et al. Recombinant thrombopoietin antiradiation therapeutic effectiveness evaluation on dogs according to hemopoiesis and survival criteria[J]. Radiats Biol Radioecol, 2013, 53(3):280-289.
|
24 |
Gluzman-Poltorak Z, Vainstein V, Basile LA. Recombinant interleukin-12, but not granulocyte-colony stimulating factor, improves survival in lethally irradiated nonhuman primates in the absence of supportive care: evidence for the development of a frontline radiation medical countermeasure[J]. Am J Hematol, 2014, 89(9):868-873.
|
25 |
Fish BL, MacVittie TJ, Szabo A, et al. WAG/RijCmcr rat models for injuries to multiple organs by single high dose ionizing radiation: similarities to non-human primates(NHP)[J]. Int J Radiat Biol, 2018, 21:1-42.
|
26 |
Singh VK, Olabisi AO. Nonhuman primates as models for the discovery and development of radiation countermeasures[J]. Expert Opin Drug Discov, 2017, 12(7):695-709.
|
27 |
Butturini A, De Souza PC, Gale RP, et al. Use of recombinant granulocyte-macrophage colony stimulating factor in the Brazil radiation accident[J]. Lancet, 1988, 2(8609):471-475.
|
28 |
戴宏,蒲汪旸,陈学英, 等. 南京"5.7"192Ir源放射事故患者的临床救治[J]. 中华放射医学与防护杂志, 2016, 36(5):324-330.
|
29 |
Gourmelon P, Benderitter M, Bertho JM, et al. European consensus on the medical management of acute radiation syndrome and analysis of the radiation accidents in Belgium and Senegal[J]. Health Phys, 2010, 98(6):825-832.
|
30 |
Hirama T, Tanosaki S, Kandatsu S, et al. Initial medical management of patients severely irradiated in the Tokai-mura criticality accident[J]. Br J Radiol, 2003, 76(94):246-253.
|
31 |
Engin VS, Tufan F, Besisik SK, et al. Hematological aftermath of the radiation accident in Istanbul[J]. Int J Radiat Biol, 2015, 91(9):724-731.
|
32 |
Liu Q, Jiang B, Jiang LP, et al. Clinical report of three cases of acute radiation sickness from a (60)Co radiation accident in Henan Province in China[J]. J Radiat Res, 2008, 49(1):63-69.
|
33 |
Farese AM, Bennett AW, Gibbs AM, et al. Efficacy of neulasta or neupogen on H-ARS and GI-ARS mortality and hematopoietic recovery in nonhuman primates after 10 Gy irradiation with 2.5% bone-marrow sparing[J]. Health Phys, 2019, 116(3):339-353.
|
34 |
Macvittie TJ, Farese AM, Parker GA, et al. The time course of radiation-induced lung injury in a nonhuman primate model of partial-body irradiation with minimal bone marrow sparing:clinical and radiographic evidence and the effect of neupogen administration[J]. Health Phy, 2019, 116(3):366-382.
|
35 |
Sanzari JK, Krigsfeld GS, Shuman AL, et al. Effects of a granulocyte colony stimulating factor, Neulasta, in mini pigs exposed to total body proton irradiation[J]. Life Sci Space Res (Amst), 2015, 5:13-20.
|
36 |
Chen TL, Chiang YW, Lin GL, et al. Different effects of granulocyte colony-stimulating factor and erythropoietin on erythropoiesis[J]. Stem Cell Res Ther, 2018, 9(1):119.
|
37 |
Singh VK, Newman VL, Berg AN, et al. Animal models for acute radiation syndrome drug discovery[J]. Expert Opin Drug Discov, 2015, 10(5):497-517.
|
38 |
Satyamitra M, Kumar VP, Biswas S, et al. Impact of abbreviated filgrastim schedule on survival and hematopoietic recovery after irradiation in four mouse strains with different radiosensitivity[J]. Radiat Res, 2017, 187(6):659-671.
|
39 |
Plett PA, Chua HL, Sampson CH, et al. PEGylated G-CSF(BBT-015), GM-CSF(BBT-007), AND IL-11(BBT-059)analogs enhance survival and hematopoietic cell recovery in a mouse model of the hematopoietic syndrome of the acute radiation syndrome[J]. Health Phys, 2014, 106(1):7-20.
|
40 |
Weiss JF, Kumar KS, Walden TL, et al. Advances in radioprotection through the use of combined agent regimens[J]. Int J Radiat Biol, 1990, 57(4):709-722.
|
41 |
Kiang JG, Zhai M, Bolduc DL, et al. Combined therapy of pegylated G-CSF and Alxn4100TPO improves survival and mitigates acute radiation syndrome after whole-body ionizing irradiation alone and followed by wound trauma[J]. Radiat Res, 2017, 188(5):476-490.
|
42 |
Jiang S, Shen X, Liu Y, et al. Radioprotective effects of Sipunculus nudus L.polysaccharide combined with WR-2721, rhIL-11 and rhG-CSF on radiation-injured mice[J]. J Radiat Res, 2015, 56(3):515-522.
|
43 |
Li C, Lu L, Zhang J, et al. Granulocyte colony-stimulating factor exacerbates hematopoietic stem cell injury after irradiation[J]. Cell Biosci, 2015, 5:65.
|
44 |
Machan M, Matthys B, Fraga GR. Pegfilgrastim-induced Sweet's syndrome: a case report[J]. Int J Dermatol, 2014, 53(10):1275-1277.
|
45 |
Reeves, G. Overview of use of G-CSF and GM-CSF in the treatment of acute radiation injury[J]. Health Phys, 2014, 106(6):699-703.
|