切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (05) : 310 -314. doi: 10.3877/cma.j.issn.2095-1221.2018.05.009

所属专题: 文献

综述

iPSCs来源的血细胞在血液系统疾病中的应用与发展
谷雷1, 林静2, 王永春3, 刘玮4, 文文4, 赖国祥4, 柳德灵4, 刘月彬4, 陈津5, 杨忠6,()   
  1. 1. 350108 福州,福建医科大学研究生院;350025 福州,福建医科大学福总临床医学院呼吸与危重症医学科
    2. 350108 福州,福建医科大学研究生院
    3. 748000 定西,中国人民解放军31658部队
    4. 350025 福州,福建医科大学福总临床医学院呼吸与危重症医学科
    5. 350025 福州总医院全军器官移植中心,福建省移植生物学重点实验室
    6. 400038 重庆,陆军军医大学西南医院检验系临床血液学教研室
  • 收稿日期:2018-05-11 出版日期:2018-10-01
  • 通信作者: 杨忠
  • 基金资助:
    福建省科技计划重点项目(2014Y0037); 福建省临床重点专科建设项目(闽卫医政函(2015)593号)

Applications and development of induced-pluripotent-stem-cell-derived hematopoietic cells in hematological diseases

Lei Gu1, Jing Lin2, Yongchun Wang3, Wei Liu4, Wen Wen4, Guoxiang Lai4, Deling Liu4, Yuebin Liu4, Jin Chen5, Zhong Yang6,()   

  1. 1. Graduate College of Fujian Medical University, Fuzhou 350108, China; Department of Respiratory and Critical Care Medicine, Fuzhou General Hospital, Clinical Medicine College of Fujian Medical University, Fuzhou 350025, China
    2. Graduate College of Fujian Medical University, Fuzhou 350108, China
    3. 31658 Army of PLA, Dingxi 748000, China
    4. Department of Respiratory and Critical Care Medicine, Fuzhou General Hospital, Clinical Medicine College of Fujian Medical University, Fuzhou 350025, China
    5. Organ Transplant Institute of PLA and Fujian provincial Key Laboratory of Transplant Biology, Fuzhou 350025, China
    6. Department of Clinical Hematology, Faculty of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China
  • Received:2018-05-11 Published:2018-10-01
  • Corresponding author: Zhong Yang
  • About author:
    Corresponding author:Yang Zhong, Email:
引用本文:

谷雷, 林静, 王永春, 刘玮, 文文, 赖国祥, 柳德灵, 刘月彬, 陈津, 杨忠. iPSCs来源的血细胞在血液系统疾病中的应用与发展[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(05): 310-314.

Lei Gu, Jing Lin, Yongchun Wang, Wei Liu, Wen Wen, Guoxiang Lai, Deling Liu, Yuebin Liu, Jin Chen, Zhong Yang. Applications and development of induced-pluripotent-stem-cell-derived hematopoietic cells in hematological diseases[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(05): 310-314.

骨髓(BM)移植已在许多血液病中成功应用多年,主要依赖于成人BM和外周血(PB)中的造血干细胞(HSCs)。然而,合适配型HSCs的稀缺限制了其临床应用,难以满足更多有需要的患者。诱导多能干细胞(iPSCs)的出现,有望解决这一难题。iPSCs具有分化成所有血细胞的潜能,使得HSCs和其他血细胞在血液病中的广泛应用成为可能。然而,临床应用iPSCs治疗血液病仍障碍重重。本文主要回顾了iPSCs在血液病中的应用和发展以及面临的问题和挑战。

Bone marrow (BM) transplantation has been successfully used in many hematological diseases for several years, which mainly depends on hematopoietic stem cells (HSCs) from adult BM and peripheral blood (PB). However, the rarity of HSCs with appropriate matching has limited their applications to patients. Fortunately, the advent of iPSCs, which have the potential to differentiate into all cell types of the hematopoietic system, makes the wide applications of HSCs and other blood cells in hematology possible. However, there are still many barriers in using iPSCs in treating hematological diseases. This article mainly reviews the applications, development and some unsolved issues and challenges of iPSCs in hematology.

图1 iPSCs在血液系统疾病中的应用
1
Amabile G, Meissner A. Induced pluripotent stem cells: current progress and potential for regenerative medicine[J]. Trends Mol Med, 2009, 15(2):59-68.
2
Swijnenburg RJ, Schrepfer S, Govaert JA, et al. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts[J]. Proc Natl Acad Sci USA, 2008, 105: 12991-12996.
3
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
4
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
5
Yu JY, Vodyanik MA, Smuga-Otto KA, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858):1917-1920.
6
Sakamoto H, Tsuji-Tamura K, Ogawa M. Hematopoiesis from pluripotent stem cell lines[J]. Int J Hematol, 2010, 91: 384-391.
7
Slukvin II, Vodyanik MA, Thomson JA, et al. Directed differentiation of human embryonic stem cells into functional dendritic cells through the myeloid pathway[J]. J Immunol, 2006, 176(5):2924-2932.
8
Umeda K, Heike T, Yoshimoto M, et al. Development of primitive and definitive hematopoiesis from nonhuman Primate embryonic stem cells in vitro [J]. Blood, 2003, 102(11, 1):329A-330A.
9
Gaur M, Kamata T, Wang S, et al. Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function[J]. J Thromb Haemost, 2006, 4(2): 436-442.
10
Ye ZH, Zhan HC, Mali P, et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders [J]. Blood, 2009, 114(27):5473-5480.
11
Chang G, Liu S, Wang FC, et al. Differential methylation status of imprinted genes in nuclear transfer derived ES (NT-ES) cells[J]. Genomics, 2009, 93(2):112-119.
12
Berdasco M, Melguizo C, Prados J, et al. DNA methylation plasticity of human Adipose-Derived stem cells in lineage commitment[J]. Am J Pathol, 2012, 181(6):2079-2093.
13
Broeske AM, Vockentanz L, Kharazi S, et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction [J]. Nat Genet, 2009, 41(11):1207-1215.
14
Ono R, Taki T, Taketani T, et al. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23)[J]. Cancer Res, 2002, 62: 4075-4080.
15
Meyer C, Kowarz E, Hofmann J, et al. New insights to the MLL recombinome of acute leukemias[J]. Leukemia, 2009, 23: 1490-1499.
16
Lee G, Papapetrou EP, Kim H, et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs[J]. Nature, 2009, 461(7262):402-U100.
17
Zou JZ, Sweeney CL, Chou BK, et al. Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by Zinc finger nuclease-mediated safe harbor targeting[J]. Blood, 2011, 117(21):5561-5572.
18
Mueller LU, Milsom MD, Harris CE, et al. Overcoming reprogramming resistance of Fanconi anemia cells[J]. Blood, 2012, 119(23):5449-5457.
19
Sebastiano V, Maeder ML, Angstman JF, et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered Zinc finger nucleases[J]. Stem Cells, 2011, 29(11):1717-1726.
20
Kim K, Doi A, Wen B, et al. Epigenetic memory in induced pluripotent stem cells[J]. Nature, 2010, 467(7313):U60-285.
21
Chadwick K, Wang L, Li L, et al. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells[J]. Blood, 2003, 102: 906-915.
22
Cerdan C, Rouleau A, Bhatia M. VEGF-A(165) augments erythropoietic development from human embryonic stem cells[J]. Blood, 2004, 103(7):2504-2512.
23
Lapillonne H, Kobari L, Mazurier CA, et al. Red blood cell Generation from human induced pluripotent stem cells: perspectives for transfusion medicine[J]. Haematologica, 2010, 95(10):1651-1659.
24
Dias J, Gumenyuk M, Kang H, et al. Generation of red blood cells from human induced pluripotent stem cells[J]. Stem Cells Dev, 2011, 20: 1639-1647.
25
Kattman SJ, Witty AD, Gagliardi M, et al. Stage-Specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines[J]. Cell Stem Cell, 2011, 8(2):228-240.
26
Kobari L, Yates F, Oudrhiri N, et al. Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model[J]. Haematologica, 2012, 97(12):1795-1803.
27
Giani FC, Fiorini C, Wakabayashi A, et al. Targeted Application of Human Genetic Variation Can Improve Red Blood Cell Production from Stem Cells[J]. Cell Stem Cell, 2016, 18: 73-78.
28
Gasparyan AY. Platelets in inflammation and thrombosis[J]. Inflamm Allergy Drug Targets, 2010, 9(5): 319-321.
29
Borst S, Sim X, Poncz M, et al. Induced Pluripotent Stem Cell-Derived Megakaryocytes and Platelets for Disease Modeling and Future Clinical Applications[J]. Arterioscler Thromb Vasc Biol, 2017, 37(11): 2007-2013.
30
Nakamura S, Takayama N, Hirata S, et al. Expandable megakaryocyte cell lines enable clinically applicable Generation of platelets from human induced pluripotent stem cells[J]. Cell Stem Cell, 2014, 14(4):535-548.
31
Lu SJ, Li F, Yin H, et al. Platelets generated from human embryonic stem cells are functional in vitro and in the microcirculation of living mice[J]. Cell Res, 2011, 21(3): 530-545.
32
Kaufman RM, Airo R, Pollack S, et al. Circulating megakaryocytes and platelet release in the lung[J]. Blood, 1965, 26(6): 720-731.
33
Nakagawa Y, Nakamura S, Nakajima M, et al. Two differential flows in a bioreactor promoted platelet Generation from human pluripotent stem cell-derived megakaryocytes[J]. Exp Hematol, 2013, 41(8):742-748.
34
Moreau T, Evans AL, Vasquez L, et al. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming[J]. Nat Commun, 2016, 7:11208.
35
Gore A, Li Z, Fung HL, et al. Somatic coding mutations in human induced pluripotent stem cells[J]. Nature, 2011, 471(7336):63-67.
36
Cheng L, Hansen NF, Zhao L, et al. Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression[J]. Cell Stem Cell, 2012, 10(3):337-344.
37
Young MA, Larson DE, Sun CW, et al. Background mutations in parental cells account for most of the genetic heterogeneity of induced pluripotent stem cells [J]. Cell Stem Cell, 2012, 10(5):570-582.
38
Bar-Nur O, Russ HA, Efrat S, et al. Epigenetic memory and preferential Lineage-Specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells[J]. Cell Stem Cell, 2011, 9(1):17-23.
39
Lister R, Pelizzola M, Kida YS, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells[J]. Nature, 2011, 471(7336):68-U84.
40
Nishino K, Toyoda M, Yamazaki-Inoue MA, et al. DNA methylation dynamics in human induced pluripotent stem cells over time[J]. PLoS Genet, 2011, 7(5): e1002085.
41
Ohi Y, Qin H, Hong C, et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells[J]. Nat Cell Biol, 2011, 13(5): 541-549.
42
Polo JM, Liu S, Figueroa ME, et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells[J]. Nat Biotechnol, 2010, 28(8):848-855.
43
Kim DS, Lee JS, Leem JW, et al. Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity[J]. Stem Cell Reviews and Reports, 2010, 6(2):270-281.
44
Liu H, Kim Y, Sharkis S, et al. In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins [J]. Sci Transl Med, 2011, 3(82): 82ra39.
45
Okita K, Matsumura Y, Sato Y, et al. A more efficient method to generate integration-free human iPS cells[J]. Nature Methods, 2011, 8(5): 409-412.
46
Esteban MA, Wang T, Qin B, et al. Vitamin C enhances the Generation of mouse and human induced pluripotent stem cells [J]. Cell Stem Cell, 2010, 6(1):71-79.
47
Ferreira AF, Calin GA, Picanco-Castro VA, et al. Hematopoietic stem cells from induced pluripotent stem cells-considering the role of microRNA as a cell differentiation regulator [J]. J Cell Sci, 2018, 131(4):131.
48
Wang H, Li X, Gao S, et al. Transdifferentiation via transcription factors or microRNAs: Current status and perspective[J]. Differentiation, 2015, 90(4-5):69-76.
49
Vitaloni M, Pulecio J, Bilic J, et al. MicroRNAs contribute to induced pluripotent stem cell somatic donor memory[J]. J Biol Chem, 2014, 289(4): 2084-2098.
50
Hysolli E, Tanaka Y, Su J, et al. Regulation of the DNA methylation landscape in human somatic cell reprogramming by the miR-29 family[J]. Stem Cell Reports, 2016, 7(1):43-54.
51
Vierbuchen T, Ostermeier A, Pang ZP, et al. Direct conversion of fibroblasts to functional neurons by defined factors[J]. Nature, 2010, 463(7284):1035-1041.
52
Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors[J]. Cell, 2010, 142(3):375-386.
53
Feng R, Desbordes SC, Xie HF, et al. PUA and C/EBP alpha/beta convert fibroblasts into macrophage-like cells[J]. Proc Natl Acad Sci U S A, 2008, 105(16):6057-6062.
54
Szabo E, Rampalli S, Risueño RM, et al. Direct conversion of human fibroblasts to multilineage blood progenitors[J]. Nature, 2010, 468(7323):521-526.
[1] 袁静, 杨超, 陈娟. 间充质干细胞对新生儿缺氧缺血性脑损伤的神经保护作用[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(04): 386-391.
[2] 邱坤银, 廖雄宇, 郭淑仪, 吴若豪, 黄科, 黎阳, 徐宏贵, 方建培, 周敦华. 卡泊芬净治疗儿童血液病合并侵袭性真菌病的临床评价[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(03): 262-267.
[3] 管贤伟, 孙云, 马定远, 王彦云, 蒋涛. 甲基丙二酸血症被误诊为血液系统疾病二例分析并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(01): 57-62.
[4] 冯丹, 姜尔烈. 血液病患者侵袭性肺曲霉菌病研究进展[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(03): 145-149.
[5] 谭汝铿, 曾润玲, 王卓然, 徐萌. 人源类器官的研究进展及在口腔医学的展望[J]. 中华口腔医学研究杂志(电子版), 2019, 13(02): 65-70.
[6] 符莞孟, 王晓黎, 刘玉, 张潍, 张菊. 干细胞治疗多囊卵巢综合征的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 108-114.
[7] 武玉康, 康九红. 多能干细胞在心脏发育和疾病研究中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 378-382.
[8] 胡敏洁, 王思贤, 王永煜. 人诱导多能干细胞及其在血管相关疾病模型中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 167-175.
[9] 杜为, 崔丽娟, 徐迎, 张华, 杜宏伟, 张金美, 刘容志, 王征宇, 杨文玲, 张宇. 脐带血单个核细胞诱导多能干细胞来源自然杀伤细胞的生物学特性[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 329-336.
[10] 马恩奇, 张倩, 陈雪梅, 刘韬. iPSCs诱导的造血干细胞对内皮细胞血管生成作用的影响及相关作用机制研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(04): 193-199.
[11] 张金梅, 杨远荣. 类器官的应用研究进展[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(01): 50-53.
[12] 罗宁, 钟德君. 锂对造血干细胞和神经干细胞作用影响的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(06): 366-372.
[13] 汪东生, 吴理达, 顾雨春. 细胞基因疗法在视网膜退行性疾病中的应用和挑战[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 129-133.
[14] 姜春菲, 王芳, 魏娜, 刘梅, 袁丽莉, 孙爽, 刘红星. 血液病基因检测临床应用认知程度调研报告[J]. 中华临床医师杂志(电子版), 2019, 13(01): 55-59.
[15] 文颖, 杨秀军, 李婷婷, 乐萱. 异物创伤性动脉瘤犬模型构建的初步探讨[J]. 中华介入放射学电子杂志, 2018, 06(04): 332-338.
阅读次数
全文


摘要