| 1 | Amabile G, Meissner A. Induced pluripotent stem cells: current progress and potential for regenerative medicine[J]. Trends Mol Med, 2009, 15(2):59-68. | 
																													
																						| 2 | Swijnenburg RJ, Schrepfer S, Govaert JA, et al. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts[J]. Proc Natl Acad Sci USA, 2008, 105: 12991-12996. | 
																													
																						| 3 | Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676. | 
																													
																						| 4 | Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872. | 
																													
																						| 5 | Yu JY, Vodyanik MA, Smuga-Otto KA, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858):1917-1920. | 
																													
																						| 6 | Sakamoto H, Tsuji-Tamura K, Ogawa M. Hematopoiesis from pluripotent stem cell lines[J]. Int J Hematol, 2010, 91: 384-391. | 
																													
																						| 7 | Slukvin II, Vodyanik MA, Thomson JA, et al. Directed differentiation of human embryonic stem cells into functional dendritic cells through the myeloid pathway[J]. J Immunol, 2006, 176(5):2924-2932. | 
																													
																						| 8 | Umeda K, Heike T, Yoshimoto M, et al. Development of primitive and definitive hematopoiesis from nonhuman Primate embryonic stem cells in vitro [J]. Blood, 2003, 102(11, 1):329A-330A. | 
																													
																						| 9 | Gaur M, Kamata T, Wang S, et al. Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function[J]. J Thromb Haemost, 2006, 4(2): 436-442. | 
																													
																						| 10 | Ye ZH, Zhan HC, Mali P, et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders [J]. Blood, 2009, 114(27):5473-5480. | 
																													
																						| 11 | Chang G, Liu S, Wang FC, et al. Differential methylation status of imprinted genes in nuclear transfer derived ES (NT-ES) cells[J]. Genomics, 2009, 93(2):112-119. | 
																													
																						| 12 | Berdasco M, Melguizo C, Prados J, et al. DNA methylation plasticity of human Adipose-Derived stem cells in lineage commitment[J]. Am J Pathol, 2012, 181(6):2079-2093. | 
																													
																						| 13 | Broeske AM, Vockentanz L, Kharazi S, et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction [J]. Nat Genet, 2009, 41(11):1207-1215. | 
																													
																						| 14 | Ono R, Taki T, Taketani T, et al. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23)[J]. Cancer Res, 2002, 62: 4075-4080. | 
																													
																						| 15 | Meyer C, Kowarz E, Hofmann J, et al. New insights to the MLL recombinome of acute leukemias[J]. Leukemia, 2009, 23: 1490-1499. | 
																													
																						| 16 | Lee G, Papapetrou EP, Kim H, et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs[J]. Nature, 2009, 461(7262):402-U100. | 
																													
																						| 17 | Zou JZ, Sweeney CL, Chou BK, et al. Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by Zinc finger nuclease-mediated safe harbor targeting[J]. Blood, 2011, 117(21):5561-5572. | 
																													
																						| 18 | Mueller LU, Milsom MD, Harris CE, et al. Overcoming reprogramming resistance of Fanconi anemia cells[J]. Blood, 2012, 119(23):5449-5457. | 
																													
																						| 19 | Sebastiano V, Maeder ML, Angstman JF, et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered Zinc finger nucleases[J]. Stem Cells, 2011, 29(11):1717-1726. | 
																													
																						| 20 | Kim K, Doi A, Wen B, et al. Epigenetic memory in induced pluripotent stem cells[J]. Nature, 2010, 467(7313):U60-285. | 
																													
																						| 21 | Chadwick K, Wang L, Li L, et al. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells[J]. Blood, 2003, 102: 906-915. | 
																													
																						| 22 | Cerdan C, Rouleau A, Bhatia M. VEGF-A(165) augments erythropoietic development from human embryonic stem cells[J]. Blood, 2004, 103(7):2504-2512. | 
																													
																						| 23 | Lapillonne H, Kobari L, Mazurier CA, et al. Red blood cell Generation from human induced pluripotent stem cells: perspectives for transfusion medicine[J]. Haematologica, 2010, 95(10):1651-1659. | 
																													
																						| 24 | Dias J, Gumenyuk M, Kang H, et al. Generation of red blood cells from human induced pluripotent stem cells[J]. Stem Cells Dev, 2011, 20: 1639-1647. | 
																													
																						| 25 | Kattman SJ, Witty AD, Gagliardi M, et al. Stage-Specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines[J]. Cell Stem Cell, 2011, 8(2):228-240. | 
																													
																						| 26 | Kobari L, Yates F, Oudrhiri N, et al. Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model[J]. Haematologica, 2012, 97(12):1795-1803. | 
																													
																						| 27 | Giani FC, Fiorini C, Wakabayashi A, et al. Targeted Application of Human Genetic Variation Can Improve Red Blood Cell Production from Stem Cells[J]. Cell Stem Cell, 2016, 18: 73-78. | 
																													
																						| 28 | Gasparyan AY. Platelets in inflammation and thrombosis[J]. Inflamm Allergy Drug Targets, 2010, 9(5): 319-321. | 
																													
																						| 29 | Borst S, Sim X, Poncz M, et al. Induced Pluripotent Stem Cell-Derived Megakaryocytes and Platelets for Disease Modeling and Future Clinical Applications[J]. Arterioscler Thromb Vasc Biol, 2017, 37(11): 2007-2013. | 
																													
																						| 30 | Nakamura S, Takayama N, Hirata S, et al. Expandable megakaryocyte cell lines enable clinically applicable Generation of platelets from human induced pluripotent stem cells[J]. Cell Stem Cell, 2014, 14(4):535-548. | 
																													
																						| 31 | Lu SJ, Li F, Yin H, et al. Platelets generated from human embryonic stem cells are functional in vitro and in the microcirculation of living mice[J]. Cell Res, 2011, 21(3): 530-545. | 
																													
																						| 32 | Kaufman RM, Airo R, Pollack S, et al. Circulating megakaryocytes and platelet release in the lung[J]. Blood, 1965, 26(6): 720-731. | 
																													
																						| 33 | Nakagawa Y, Nakamura S, Nakajima M, et al. Two differential flows in a bioreactor promoted platelet Generation from human pluripotent stem cell-derived megakaryocytes[J]. Exp Hematol, 2013, 41(8):742-748. | 
																													
																						| 34 | Moreau T, Evans AL, Vasquez L, et al. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming[J]. Nat Commun, 2016, 7:11208. | 
																													
																						| 35 | Gore A, Li Z, Fung HL, et al. Somatic coding mutations in human induced pluripotent stem cells[J]. Nature, 2011, 471(7336):63-67. | 
																													
																						| 36 | Cheng L, Hansen NF, Zhao L, et al. Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression[J]. Cell Stem Cell, 2012, 10(3):337-344. | 
																													
																						| 37 | Young MA, Larson DE, Sun CW, et al. Background mutations in parental cells account for most of the genetic heterogeneity of induced pluripotent stem cells [J]. Cell Stem Cell, 2012, 10(5):570-582. | 
																													
																						| 38 | Bar-Nur O, Russ HA, Efrat S, et al. Epigenetic memory and preferential Lineage-Specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells[J]. Cell Stem Cell, 2011, 9(1):17-23. | 
																													
																						| 39 | Lister R, Pelizzola M, Kida YS, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells[J]. Nature, 2011, 471(7336):68-U84. | 
																													
																						| 40 | Nishino K, Toyoda M, Yamazaki-Inoue MA, et al. DNA methylation dynamics in human induced pluripotent stem cells over time[J]. PLoS Genet, 2011, 7(5): e1002085. | 
																													
																						| 41 | Ohi Y, Qin H, Hong C, et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells[J]. Nat Cell Biol, 2011, 13(5): 541-549. | 
																													
																						| 42 | Polo JM, Liu S, Figueroa ME, et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells[J]. Nat Biotechnol, 2010, 28(8):848-855. | 
																													
																						| 43 | Kim DS, Lee JS, Leem JW, et al. Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity[J]. Stem Cell Reviews and Reports, 2010, 6(2):270-281. | 
																													
																						| 44 | Liu H, Kim Y, Sharkis S, et al. In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins [J]. Sci Transl Med, 2011, 3(82): 82ra39. | 
																													
																						| 45 | Okita K, Matsumura Y, Sato Y, et al. A more efficient method to generate integration-free human iPS cells[J]. Nature Methods, 2011, 8(5): 409-412. | 
																													
																						| 46 | Esteban MA, Wang T, Qin B, et al. Vitamin C enhances the Generation of mouse and human induced pluripotent stem cells [J]. Cell Stem Cell, 2010, 6(1):71-79. | 
																													
																						| 47 | Ferreira AF, Calin GA, Picanco-Castro VA, et al. Hematopoietic stem cells from induced pluripotent stem cells-considering the role of microRNA as a cell differentiation regulator [J]. J Cell Sci, 2018, 131(4):131. | 
																													
																						| 48 | Wang H, Li X, Gao S, et al. Transdifferentiation via transcription factors or microRNAs: Current status and perspective[J]. Differentiation, 2015, 90(4-5):69-76. | 
																													
																						| 49 | Vitaloni M, Pulecio J, Bilic J, et al. MicroRNAs contribute to induced pluripotent stem cell somatic donor memory[J]. J Biol Chem, 2014, 289(4): 2084-2098. | 
																													
																						| 50 | Hysolli E, Tanaka Y, Su J, et al. Regulation of the DNA methylation landscape in human somatic cell reprogramming by the miR-29 family[J]. Stem Cell Reports, 2016, 7(1):43-54. | 
																													
																						| 51 | Vierbuchen T, Ostermeier A, Pang ZP, et al. Direct conversion of fibroblasts to functional neurons by defined factors[J]. Nature, 2010, 463(7284):1035-1041. | 
																													
																						| 52 | Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors[J]. Cell, 2010, 142(3):375-386. | 
																													
																						| 53 | Feng R, Desbordes SC, Xie HF, et al. PUA and C/EBP alpha/beta convert fibroblasts into macrophage-like cells[J]. Proc Natl Acad Sci U S A, 2008, 105(16):6057-6062. | 
																													
																						| 54 | Szabo E, Rampalli S, Risueño RM, et al. Direct conversion of human fibroblasts to multilineage blood progenitors[J]. Nature, 2010, 468(7323):521-526. |